Abstract

In this work, a large eddy simulation (LES) of a typical subsonic diffuser provides data used to analyze coherent structure in a separated flow with dynamic mode decomposition (DMD). From this, a low–dimensional approximation, which retains the main dynamic characteristics of the original flow fields, is obtained. In particular, specific dynamic structures associated with a unique frequency are isolated. The spatial structures of the real and imaginary parts of the DMD mode are similar but with a phase difference. The contribution of the conjugate modes to the evolution of the DMD modes over time is discussed. The dominant frequency is found to be related to the wake mode. The scale of wake will saturate, and the shear layer will become weaker and merges into the wake structure as it develops downstream. This allows direction for effective flow control strategies using this information.

References

1.
Li
,
Y. H.
,
Wu
,
Y.
,
Zhou
,
M.
,
Su
,
C. B.
,
Zhang
,
X. W.
, and
Zhu
,
J. Q.
,
2010
, “
Control of the Corner Separation in a Compressor Cascade by Steady and Unsteady Plasma Aerodynamic Actuation
,”
Exp. Fluids
,
48
(
6
), pp.
1015
1023
.10.1007/s00348-009-0787-2
2.
Hecklau
,
M.
,
Wiederhold
,
O.
,
Zander
,
V.
,
King
,
R.
,
Nitsche
,
W.
,
Huppertz
,
A.
, and
Swoboda
,
M.
,
2011
, “
Active Separation Control With Pulsed Jets in a Critically Loaded Compressor Cascade
,”
AIAA J.
,
49
(
8
), p.
1729
.10.2514/1.J050931
3.
Greenblatt
,
D.
, and
Wygnanski
,
I. J.
,
2000
, “
The Control of Flow Separation by Periodic Excitation
,”
Prog. Aerosp. Sci.
,
36
(
7
), pp.
487
545
.10.1016/S0376-0421(00)00008-7
4.
Mohan
,
A. T.
, and
Gaitonde
,
D. V.
,
2017
, “
Analysis of Airfoil Stall Control Using Dynamic Mode Decomposition
,”
J. Aircr.
,
54
(
4
), pp.
1508
1520
.10.2514/1.C034044
5.
Wu
,
J. Z.
,
Lu
,
X. Y.
,
Denny
,
A. G.
,
Fan
,
M.
, and
Wu
,
J. M.
,
1998
, “
Post-Stall Flow Control on an Airfoil by Local Unsteady Forcing
,”
J. Fluid Mech.
,
371
, pp.
21
58
.10.1017/S0022112098002055
6.
Feero
,
M. A.
,
Lavoie
,
P.
, and
Sullivan
,
P. E.
,
2017
, “
Influence of Synthetic Jet Location on Active Control of an Airfoil at Low Reynolds Number
,”
Exp. Fluids
,
58
(
8
), pp.
1
12
.10.1007/s00348-017-2387-x
7.
Rist
,
U.
, and
Maucher
,
U.
,
2002
, “
Investigations of Time-Growing Instabilities in Laminar Separation Bubbles
,”
Eur. J. Mech., B/Fluids
,
21
(
5
), pp.
495
509
.10.1016/S0997-7546(02)01205-0
8.
Ziade
,
P.
,
Feero
,
M. A.
,
Lavoie
,
P.
, and
Sullivan
,
P. E.
,
2018
, “
Shear Layer Development, Separation, and Stability Over a Low-Reynolds Number Airfoil
,”
ASME J. Fluids Eng.
,
140
(
7
), p.
071201
.10.1115/1.4039233
9.
Jones
,
L. E.
,
Sandberg
,
R. D.
, and
Sandham
,
N. D.
,
2008
, “
Direct Numerical Simulations of Forced and Unforced Separation Bubbles on an Airfoil at Incidence
,”
J. Fluid Mech.
,
602
, pp.
175
207
.10.1017/S0022112008000864
10.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA J.
,
55
(
12
), pp.
4013
4041
.10.2514/1.J056060
11.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,”
Atmospheric Turbulence and Radio Wave Propagation
,
A. M.
Yaglom
and
V. I.
Tatarski
, eds.,
Nauka
,
Moscow, Russia
, pp.
166
178
.
12.
Meyer
,
K. E.
,
Pedersen
,
J. M.
, and
Özcan
,
O.
,
2007
, “
A Turbulent Jet in Crossflow Analysed With Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
583
, pp.
199
227
.10.1017/S0022112007006143
13.
Prothin
,
S.
,
Djeridi
,
H.
, and
Billard
,
J.-Y.
,
2014
, “
Coherent and Turbulent Process Analysis of the Effects of a Longitudinal Vortex on Boundary Layer Detachment on a NACA0015 Foil
,”
J. Fluids Struct.
,
47
, pp.
2
20
.10.1016/j.jfluidstructs.2013.08.014
14.
Feng
,
L.-H.
,
Wang
,
J.-J.
, and
Pan
,
C.
,
2011
, “
Proper Orthogonal Decomposition Analysis of Vortex Dynamics of a Circular Cylinder Under Synthetic Jet Control
,”
Phys. Fluids
,
23
(
1
), p.
014106
.10.1063/1.3540679
15.
Mulleners
,
K.
, and
Raffel
,
M.
,
2012
, “
The Onset of Dynamic Stall Revisited
,”
Exp. Fluids
,
52
(
3
), pp.
779
793
.10.1007/s00348-011-1118-y
16.
Zhang
,
Q.
,
Liu
,
Y.
, and
Wang
,
S.
,
2014
, “
The Identification of Coherent Structures Using Proper Orthogonal Decomposition and Dynamic Mode Decomposition
,”
J. Fluids Struct.
,
49
, pp.
53
72
.10.1016/j.jfluidstructs.2014.04.002
17.
Rowley
,
C. W.
,
Mezi
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2009
, “
Spectral Analysis of Nonlinear Flows
,”
J. Fluid Mech.
,
641
, pp.
115
127
.10.1017/S0022112009992059
18.
Schmid
,
P.
,
Meyer
,
K.
, and
Pust
,
O.
,
2009
, “
Dynamic Mode Decomposition and Proper Orthogonal Decomposition of Flow in a Lid-Driven Cylindrical Cavity
,”
Eighth International Symposium on Particle Image
Velocimetry (
PIV
),
Melbourne, Victoria, Australia
,
Aug. 25–28
, p.
25
28
.https://www.researchgate.net/publication/267193704_Dynamic_Mode_Decomposition_and_Proper_Orthogonal_Decomposition_of_flow_in_a_lid-driven_cylindrical_cavity
19.
Muld
,
T. W.
,
Efraimsson
,
G.
, and
Henningson
,
D. S.
,
2012
, “
Flow Structures Around a High-Speed Train Extracted Using Proper Orthogonal Decomposition and Dynamic Mode Decomposition
,”
Comput. Fluids
,
57
, pp.
87
97
.10.1016/j.compfluid.2011.12.012
20.
Seena
,
A.
, and
Sung
,
H. J.
,
2011
, “
Dynamic Mode Decomposition of Turbulent Cavity Flows for Self-Sustained Oscillations
,”
Int. J. Heat Fluid Flow
,
32
(
6
), pp.
1098
1110
.10.1016/j.ijheatfluidflow.2011.09.008
21.
Nastase
,
I.
,
Meslem
,
A.
, and
El Hassan
,
M.
,
2011
, “
Image Processing Analysis of Vortex Dynamics of Lobed Jets From Three-Dimensional Diffusers
,”
Fluid Dyn. Res.
,
43
(
6
), p.
065502
.10.1088/0169-5983/43/6/065502
22.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.10.1017/S0022112010001217
23.
Huang
,
G.
,
Lu
,
W.
,
Zhu
,
J.
,
Fu
,
X.
, and
Wang
,
J.
,
2017
, “
A Nonlinear Dynamic Model for Unsteady Separated Flow Control and Its Mechanism Analysis
,”
J. Fluid Mech.
,
826
(
9
), pp.
942
974
.10.1017/jfm.2017.321
24.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations—I: The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
25.
Zhang
,
W.
, and
Samtaney
,
R.
,
2016
, “
Assessment of Spanwise Domain Size Effect on the Transitional Flow Past an Airfoil
,”
Comput. Fluids
,
124
, pp.
39
53
.10.1016/j.compfluid.2015.10.008
26.
Fu
,
X.
,
Zhu
,
J.
,
Huang
,
G.
,
Yu
,
H.
, and
Fu
,
Y.
,
2013
, “
Use of POD Method to Elucidate the Physics of Unsteady Micro-Pulsed-Jet Flow for Boundary Layer Flow Separation Control
,”
ASME
Paper No. GT2013-95266. 10.1115/GT2013-95266
27.
Zhu
,
J.
,
2014
, “
Method and Mechanism Investigation of Reducing Flow Separation in Large Diffusion Compressors by Pulsed Jet
,” Ph.D. thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
28.
Buchmann
,
N. A.
,
Atkinson
,
C.
, and
Soria
,
J.
,
2013
, “
Influence of ZNMF Jet Flow Control on the Spatio-Temporal Flow Structure Over a NACA-0015 Airfoil
,”
Exp. Fluids
,
54
(
3
), pp.
1485
1499
.10.1007/s00348-013-1485-7
29.
Seifert
,
A.
, and
Pack
,
L. G.
,
1999
, “
Oscillatory Control of Separation at High Reynolds Numbers
,”
AIAA J.
,
37
(
9
), pp.
1062
1071
.10.2514/2.834
30.
Greenblatt
,
D.
, and
Wygnanski
,
I.
,
1999
, “
Parameters Affecting Dynamic Stall Control by Oscillatory Excitation
,”
AIAA
Paper No.
99
3121
.10.2514/6.1999-3121
You do not currently have access to this content.