Abstract

Tip clearance results in the leakage flow from blade pressure side to suction side, which will further cause the tip leakage vortex (TLV). Moreover, the flow pattern in an impeller is seriously deteriorated due to the TLV and its interaction with the main stream. In this work, the TLV in a mixed flow pump is investigated by numerical simulation validated by experiment measurement. The primary tip leakage vortex (PTLV) trajectory is specially studied with consideration of the tip clearance size δ, the impeller blade number Zi, and the impeller rotational speed n. The results show that δ slightly shifts the separation point (SP) of the PTLV but rarely affects the separation angle α. The increase in Zi and the decrease in n both lead to the shift of the SP toward the blade trailing edge and the decrease in α. Furthermore, a theoretical prediction model is proposed to predict the PTLV trajectory, by which the axial position and radial position of PTLV trajectory versus the rotation angle can be predicted. The proposed model is verified to be accurate to predict the PTLV trajectory, especially for the PTLV trajectory in the main flow passage. The dynamic evolution of TLV under different tip clearance sizes can all be classified into the same three stages: splitting stage, developing stage, and merging stage. Meanwhile, the dynamic evolution frequency fe is the same as the impeller rotational frequency fi.

References

1.
Kong
,
Y.
,
Kong
,
Z.
,
Liu
,
Z.
,
Wei
,
C.
,
Zhang
,
J.
, and
An
,
G.
,
2017
, “
Pumped Storage Power Stations in China: The Past, the Present, and the Future
,”
Renewable Sustainable Energy Rev.
,
71
, pp.
720
731
.10.1016/j.rser.2016.12.100
2.
Li
,
D.
,
Wang
,
H.
,
Qin
,
Y.
,
Han
,
L.
,
Wei
,
X.
, and
Qin
,
D.
,
2017
, “
Entropy Production Analysis of Hysteresis Characteristic of a Pump-Turbine Model
,”
Energy Convers. Manage.
,
149
, pp.
175
191
.10.1016/j.enconman.2017.07.024
3.
Zhang
,
Y.
,
Zheng
,
X.
,
Li
,
J.
, and
Du
,
X.
,
2019
, “
Experimental Study on the Vibrational Performance and Its Physical Origins of a Prototype Reversible Pump Turbine in the Pumped Hydro Energy Storage Power Station
,”
Renewable Energy
,
130
(
1
), pp.
667
676
.10.1016/j.renene.2018.06.057
4.
Pei
,
J.
,
Yuan
,
S.
,
Benra
,
F.-K.
, and
Dohmen
,
H. J.
,
2012
, “
Numerical Prediction of Unsteady Pressure Field Within the Whole Flow Passage of a Radial Single-Blade Pump
,”
ASME J. Fluids Eng.
,
134
, p.
101103
.10.1115/1.4007382
5.
Liu
,
Y.
,
Tan
,
L.
,
Hao
,
Y.
, and
Xu
,
Y.
,
2017
, “
Energy Performance and Flow Patterns of a Mixed-Flow Pump With Different Tip Clearance Sizes
,”
Energies
,
10
(
2
), p.
191
.10.3390/en10020191
6.
Liu
,
Y.
,
Tan
,
L.
, and
Wang
,
B.
,
2018
, “
A Review of Tip Clearance in Propeller, Pump and Turbine
,”
Energies
,
11
(
9
), p.
2202
.10.3390/en11092202
7.
Kim
,
M.
, and
Chun
,
H.
,
2007
, “
Experimental Investigation Into the Performance of the Axial-Flow-Type Waterjet According to the Variation of Impeller Tip Clearance
,”
Ocean Eng.
,
34
(
2
), pp.
275
283
.10.1016/j.oceaneng.2005.12.011
8.
Liu
,
Y.
, and
Tan
,
L.
,
2018
, “
Tip Clearance on Pressure Fluctuation Intensity and Vortex Characteristic of a Mixed Flow Pump as Turbine at Pump Mode
,”
Renewable Energy
,
129
, pp.
606
615
.10.1016/j.renene.2018.06.032
9.
Soundranayagam
,
S.
, and
Saha
,
T.
,
1996
, “
Performance of a Mixed Flow Pump With Varying Tip Clearance—Part 2
,”
Proc. Inst. Mech. Eng., Part A
,
210
(
4
), pp.
319
327
.10.1243/PIME_PROC_1996_210_050_02
10.
Thakker
,
A.
, and
Dhanasekaran
,
T.
,
2004
, “
Computed Effects of Tip Clearance on Performance of Impulse Turbine for Wave Energy Conversion
,”
Renewable Energy
,
29
(
4
), pp.
529
547
.10.1016/j.renene.2003.09.007
11.
Taha
,
Z.
,
Sugiyono
,
Y.
,
Tuan Ya
,
T. M. Y. S.
, and
Sawada
,
T.
,
2011
, “
Numerical Investigation on the Performance of Wells Turbine With Non-Uniform Tip Clearance for Wave Energy Conversion
,”
Appl. Ocean Res.
,
33
(
4
), pp.
321
331
.10.1016/j.apor.2011.07.002
12.
Wu
,
H.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2011
, “
Measurements of the Tip Leakage Vortex Structures and Turbulence in the Meridional Plane of an Axial Water-Jet Pump
,”
Exp. Fluids
,
50
(
4
), pp.
989
1003
.10.1007/s00348-010-0975-0
13.
Miorini
,
R. L.
,
Wu
,
H.
, and
Katz
,
J.
,
2010
, “
The Internal Structure of the Tip Leakage Vortex Within the Rotor of an Axial Waterjet Pump
,”
ASME J. Turbomach.
,
134
(
3
), pp.
403
419
.10.1115/1.4003065
14.
Wu
,
H.
,
Tan
,
D.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2011
, “
Three-Dimensional Flow Structures and Associated Turbulence in the Tip Region of a Waterjet Pump Rotor Blade
,”
Exp. Fluids
,
51
(
6
), pp.
1721
1737
.10.1007/s00348-011-1189-9
15.
Zhang
,
D.
,
Shi
,
W.
,
van
,
Esch
,
B. P. M.
,
Shi
,
L.
, and
Dubussion
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Trajectory and Dynamics in an Axial Flow Pump
,”
Comput. Fluids
,
112
(
1
), pp.
61
71
.10.1016/j.compfluid.2015.01.010
16.
You
,
D.
,
Wang
,
M.
, and
Moin
,
P.
,
2004
, “
Study of Tip-Clearance Flow in Turbomachines Using Large-Eddy Simulation
,”
Comput. Sci. Eng.
,
6
(
6
), pp.
38
46
.10.1109/MCSE.2004.75
17.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2007
, “
Vortex Dynamics and Low-Pressure Fluctuations in the Tip-Clearance Flow
,”
ASME J. Fluids Eng.
,
129
(
8
), pp.
1002
1014
.10.1115/1.2746911
18.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2007
, “
Large-Eddy Simulation Analysis of Mechanisms for Viscous Losses in a Turbomachinery Tip-Clearance Flow
,”
J. Fluid Mech.
,
586
, pp.
177
204
.10.1017/S0022112007006842
19.
Feng
,
J.
,
Luo
,
X.
,
Guo
,
P.
, and
Wu
,
G.
,
2016
, “
Influence of Tip Clearance on Pressure Fluctuations in an Axial Flow Pump
,”
J. Mech. Sci. Technol.
,
30
(
4
), pp.
1603
1610
.10.1007/s12206-016-0315-2
20.
Torre
,
L.
,
Pasini
,
A.
,
Cervone
,
A.
,
Pace
,
G.
,
Miloro
,
P.
, and
d'Agostino
,
L.
,
2015
, “
Effect of Tip Clearance on the Performance of a Three-Bladed Axial Inducer
,”
J. Propul. Power
,
27
(
4
), pp.
890
898
.10.2514/1.B34067
21.
Zhang
,
W.
,
Yu
,
Z.
, and
Zhu
,
B.
,
2017
, “
Influence of Tip Clearance on Pressure Fluctuation in Low Specific Speed Mixed-Flow Pump Passage
,”
Energies
,
10
(
2
), p.
148
.10.3390/en10020148
22.
Hao
,
Y.
, and
Tan
,
L.
,
2018
, “
Symmetrical and Unsymmetrical Tip Clearances on Cavitation Performance and Radial Force of a Mixed Flow Pump as Turbine at Pump Mode
,”
Renewable Energy
,
127
, pp.
368
376
.10.1016/j.renene.2018.04.072
23.
Liu
,
Y.
, and
Tan
,
L.
,
2019
, “
Spatial-Temporal Evolution of Tip Leakage Vortex in a Mixed Flow Pump With Tip Clearance
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
081302
.10.1115/1.4042756
24.
Guo
,
Q.
,
Zhou
,
L.
, and
Wang
,
Z.
,
2016
, “
Numerical Evaluation of the Clearance Geometries Effect on the Flow Field and Performance of a Hydrofoil
,”
Renewable Energy
,
99
, pp.
390
397
.10.1016/j.renene.2016.06.064
25.
Tan
,
L.
,
Xie
,
Z.
,
Liu
,
Y.
,
Hao
,
Y.
, and
Xu
,
Y.
,
2018
, “
Influence of T-Shape Tip Clearance on Performance of a Mixed-Flow Pump
,”
Proc. Inst. Mech. Eng., Part A
,
232
(
4
), pp.
386
396
.10.1177/0957650917733129
26.
Liu
,
Y.
, and
Tan
,
L.
,
2018
, “
Method of C Groove on Vortex Suppression and Energy Performance Improvement for a NACA0009 Hydrofoil With Tip Clearance in Tidal Energy
,”
Energy
,
155
, pp.
448
461
.10.1016/j.energy.2018.04.174
You do not currently have access to this content.