Abstract

The vibration performance of centrifugal impellers is important for pumps and hydraulic excitation is a key source of vibration. The complex internal secondary flow in the centrifugal impeller brings degradation on vibration performances. An attempt of optimization by controlling the thickness distribution of centrifugal impeller blade is given to repress the internal secondary flow and alleviating vibration. The usual method of modifying an impeller on vibration performance is applying splitter blades. In this study, an ordinarily designed impeller is improved by the optimization attempt and the optimized impeller (OPT) is compared with the prototype impeller (PRT) with traditional splitter blades. The vibration performances of the impellers, the PRT, the ordinary impeller (ODN), and the OPT, are investigated numerically and experimentally. Meanwhile, further study on the influence of the thickness distribution optimization on vibration is conducted. There is a relative velocity gradient from suction side (SS) to pressure side (PS) in impeller ODN, causing nonuniformity of energy distribution. By means of thickness distribution optimization, the impeller blade angle on the PS and SS along the blade-aligned streamwise location is, respectively, modified and therefore the flow field can be reordered. The energy transfer in impeller is also redistributed after the modification of blade thickness distribution. What is more, experimental research upon impeller PRT and impeller OPT is also complemented to support the computational fluid dynamics (CFD) results. The experimental results show that the hydraulic performance of the impellers basically agree with the CFD results and the vibration data also proves a better vibration performance of the OPT.

References

1.
Barrio
,
R.
,
Parrondo
,
J.
, and
Blanco
,
E.
,
2010
, “
Numerical Analysis of the Unsteady Flow in the Near-Tongue Region in a Volute-Type Centrifugal Pump for Different Operating Points
,”
Comput. Fluids
,
39
(
5
), pp.
859
870
.10.1016/j.compfluid.2010.01.001
2.
Barrio
,
R.
,
Fernandez
,
J.
,
Blanco
,
E.
, and
Parrondo
,
J.
,
2011
, “
Estimation of Radial Load in Centrifugal Pumps Using Computational Fluid Dynamics
,”
Eur. J. Mech.-B/Fluids
,
30
(
3
), pp.
316
324
.10.1016/j.euromechflu.2011.01.002
3.
Cui
,
B.
,
Li
,
X.
,
Rao
,
K.
,
Jia
,
X.
, and
Nie
,
X.
,
2018
, “
Analysis of Unsteady Radial Forces of Multistage Centrifugal Pump With Double Volute
,”
Eng. Comput.
,
35
(
3
), pp.
1500
1511
.10.1108/EC-12-2016-0445
4.
Zhang
,
N.
,
Yang
,
M.
,
Gao
,
B.
,
Li
,
Z.
, and
Ni
,
D.
,
2016
, “
Investigation of Rotor-Stator Interaction and Flow Unsteadiness in a Low Specific Speed Centrifugal Pump
,”
J. Mech. Eng.
,
62
(
1
), pp.
21
31
.10.5545/sv-jme.2015.2859
5.
Wu
,
D.
,
Yan
,
P.
,
Chen
,
X.
,
Wu
,
P.
, and
Yang
,
S.
,
2015
, “
Effect of Trailing-Edge Modification of a Mixed-Flow Pump
,”
ASME J. Fluids Eng.
,
137
(
10
), p. 101205.10.1115/1.4030488
6.
Gao
,
B.
,
Zhang
,
N.
,
Li
,
Z.
,
Ni
,
D.
, and
Yang
,
M.
,
2016
, “
Influence of the Blade Trailing Edge Profile on the Performance and Unsteady Pressure Pulsations in a Low Specific Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051106
.10.1115/1.4031911
7.
Gülich
,
J. F.
,
2010
,
Centrifugal Pumps
, 2nd ed.,
Springer
,
Berlin
.
8.
Tao
,
Y.
,
Yuan
,
S.
,
Liu
,
J.
,
Zhang
,
F.
, and
Tao
,
J.
,
2016
, “
Influence of Blade Thickness on Transient Flow Characteristics of Centrifugal Slurry Pump With Semi-Open Impeller
,”
Chin. J. Mech. Eng.
,
29
(
6
), pp.
1209
1217
.10.3901/CJME.2016.0824.098
9.
Song
,
Y.
,
Yu
,
Z.
,
Shi
,
G.
, and
Liu
,
X.
,
2018
, “
Influence of Impeller Staggered Arrangement on Radial Force and Pressure Fluctuation for a Double-Suction Centrifugal Pump
,”
Adv. Mech. Eng.
,
10
(
6
), epub.10.1177/1687814018781467
10.
Li
,
S. Y.
,
Wu
,
P.
, and
Wu
,
D. Z.
,
2016
, “
Hydraulic Optimization and Loss Analyses of a Low Specific-Speed Centrifugal Pump With Variable-Thickness Blades
,”
ASME
Paper No. FEDSM2016-7814.10.1115/FEDSM2016-7814
11.
Spence
,
R.
, and
Amaral-Teixeira
,
J.
,
2009
, “
A CFD Parametric Study of Geometrical Variations on the Pressure Pulsations and Performance Characteristics of a Centrifugal Pump
,”
Comput. Fluids
,
38
(
6
), pp.
1243
1257
.10.1016/j.compfluid.2008.11.013
12.
Yan
,
P.
,
Wu
,
P.
, and
Wu
,
D. Z.
,
2015
, “
High Efficiency and Low Pressure Fluctuation Redesign of a Centrifugal Pump Based on Unsteady CFD Analyses
,”
ASME
Paper No. AJKFluids2015-34110.10.1115/AJKFluids2015-34110
13.
Kim
,
S.
, and
Lee
,
K. Y.
,
2014
, “
Design Optimization for the Hydraulic Efficiency Improvement of a Mixed-Flow Pump Impeller
,”
ISFMFE—Sixth International Symposium on Fluid Machinery and Fluid Engineering
, Wuhan, China, Oct. 22.10.1049/cp.2014.1233
14.
Suh
,
J. W.
, and
Kim
,
J. W.
,
2017
, “
Multi-Objective Optimization of the Hydrodynamic Performance of the Second Stage of a Multi-Phase Pump
,”
Energies
,
9
(
10
), p. 1334.10.3390/en10091334
15.
Yang
,
W.
, and
Xiao
,
R.
,
2014
, “
Multiobjective Optimization Design of a Pump–Turbine Impeller Based on an Inverse Design Using a Combination Optimization Strategy
,”
ASME. J. Fluids Eng.
,
136
(
1
), p.
014501
.10.1115/1.4025454
16.
Goto
,
A.
, and
Zangeneh
,
M.
,
2002
, “
Hydrodynamic Design of Pump Diffuser Using Inverse Design Method and CFD
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
319
328
.10.1115/1.1467599
17.
Miyauchi
,
S.
,
Horiguchi
,
H.
,
Fukutomi
,
J.
, and
Takahashi
,
A.
,
2004
, “
Optimization of Meridional Flow Channel Design of Pump Impeller
,”
Int. J. Rotating Mach.
,
10
(
2
), pp.
115
119
.10.1155/S1023621X04000120
18.
Arabnia
,
M.
, and
Ghaly
,
W.
,
2010
, “
On the Use of Blades Stagger and Stacking in Turbine Stage Optimization
,”
ASME
Paper No. GT2010-23399.10.1115/GT2010-23399
19.
Heo
,
M.-W.
,
Ma
,
S.-B.
,
Shim
,
H.-S.
, and
Kim
,
K.-Y.
,
2016
, “
High-Efficiency Design Optimization of a Centrifugal Pump
,”
J. Mech. Sci. Technol.
,
30
(
9
), pp.
3917
3927
.10.1007/s12206-016-0803-4
20.
Samad
,
A.
, and
Kim
,
K. Y.
,
2009
, “
Surrogate Based Optimization Techniques for Aerodynamic Design of Turbomachinery
,”
Int. J. Fluid Mach. Syst.
,
2
(
2
), pp.
179
188
.10.5293/IJFMS.2009.2.2.179
21.
Wang
,
W.
,
Pei
,
J.
,
Yuan
,
S.
,
Zhang
,
J.
,
Yuan
,
J.
, and
Xu
,
C.
,
2016
, “
Application of Different Surrogate Models on the Optimization of Centrifugal Pump
,”
J. Mech. Sci. Technol.
,
30
(
2
), pp.
567
574
.10.1007/s12206-016-0110-0
22.
Lu
,
H. A.
,
Zheng
,
X. Q.
, and
Li
,
Q. S.
,
2014
, “
A Combinatorial Optimization Design Method Applied to S-Shaped Compressor Transition Duct Design
,”
Proc. Inst. Mech. Eng., Part G
,
228
(
10
), pp.
1749
1758
.10.1177/0954410014531922
23.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
,
2006
, “
Analytical Global Sensitivity Analysis and Uncertainty Propagation for Robust Design
,”
J. Qual. Technol.
,
38
(
4
), p.
333
.10.1080/00224065.2006.11918622
24.
Zakerifar
,
M.
,
Biles
,
W. E.
, and
Evans
,
G. W.
,
2011
, “
Kriging Metamodeling in Multiple-Objective Simulation Optimization
,”
Simulation
,
87
(
10
), pp.
843
856
.10.1177/0037549711411964
25.
Timothy
,
W. S.
,
Timothy
,
M. M.
,
John
,
J. K.
, and
Farrokh
,
M.
,
2001
, “
Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization
,”
AIAA J.
,
39
(
12
), pp.
2233
2241
.10.2514/2.1234
26.
Tao
,
R.
,
Xiao
,
R.
,
Zhu
,
D.
, and
Wang
,
F.
,
2018
, “
Multi-Objective Optimization of Double Suction Centrifugal Pump
,”
Proc. Inst. Mech. Eng., Part C
,
232
(
6
), pp.
1108
1117
.10.1177/0954406217699020
27.
Kleijnen
,
J. P.
,
2009
, “
Kriging Metamodeling in Simulation: A Review
,”
Eur. J. Oper. Res.
,
192
(
3
), pp.
707
716
.10.1016/j.ejor.2007.10.013
28.
Zhang
,
Y.
,
Hu
,
S.
,
Wu
,
J.
,
Zhang
,
Y.
, and
Chen
,
L.
,
2014
, “
Multi-Objective Optimization of Double Suction Centrifugal Pump Using Kriging Metamodels
,”
Adv. Eng. Software
,
74
, pp.
16
26
.10.1016/j.advengsoft.2014.04.001
You do not currently have access to this content.