Abstract

In this study, natural convection of non-Newtonian power-law fluids around an array of elliptic cylinders has been investigated numerically. The governing equations have been solved using an in-house computational fluid dynamics code based on the well-known finite volume method. It is assumed that the flow and temperature fields are laminar, steady, and two-dimensional. Furthermore, due to the low-temperature difference between the tube walls and the surrounding fluid, the changes in the physical properties of the fluids are neglected. The numerical results are validated against the available experimental and numerical results. The results show that by increasing the non-Newtonian fluid power-law index, the ratio of average Nusselt number of the ith cylinder to the average Nusselt number of a single cylinder under identical thermal conditions decreases. Moreover, it is found that the increase in the ratio of the distance between elliptic centers and the elliptic vertical diameter increases the ratio of the average Nusselt number of ith cylinder to the average Nusselt number for a single cylinder. Finally, a mathematical expression is given for the array averaged Nusselt number.

References

1.
Ilyas
,
S. U.
,
Pendyala
,
R.
, and
Narahari
,
M.
,
2017
, “
An Experimental Study on the Natural Convection Heat Transfer in Rectangular Enclosure Using Functionalized Alumina-Thermal Oil-Based Nanofluids
,”
Appl. Therm. Eng.
,
127
, pp.
765
775
.10.1016/j.applthermaleng.2017.08.088
2.
He
,
Z.
,
Fang
,
X.
,
Zhang
,
Z.
, and
Gao
,
X.
,
2016
, “
Numerical Investigation on Performance Comparison of Non-Newtonian Fluid Flow in Vertical Heat Exchangers Combined Helical Baffle With Elliptic and Circular Tubes
,”
Appl. Therm. Eng.
,
100
, pp.
84
97
.10.1016/j.applthermaleng.2016.02.033
3.
Cho
,
C.-C.
,
Chen
,
C.-L.
,
Hwang
,
J.-J.
, and
Chen
,
C. O-K.
,
2013
, “
Natural Convection Heat Transfer Performance of Non-Newtonian Power-Law Fluids Enclosed in Cavity With Complex-Wavy Surfaces
,”
ASME J. Heat Transfer
,
136
(
1
), p.
014502
.10.1115/1.4025134
4.
Noori Rahim Abadi
,
S. M. A.
, and
Jafari
,
A.
,
2012
, “
Investigating the Natural Convection Heat Transfer From Two Elliptic Cylinders in a Closed Cavity at Different Cylinder Spacings
,”
Heat Transfer Res.
,
43
, pp.
259
284
.10.1615/HeatTransRes.2012002036
5.
Yousefi
,
T.
, and
Ashjaee
,
M.
,
2007
, “
Experimental Study of Natural Convection Heat Transfer From Vertical Array of Isothermal Horizontal Elliptic Cylinders
,”
Exp. Therm. Fluid Sci.
,
32
(
1
), pp.
240
248
.10.1016/j.expthermflusci.2007.04.001
6.
Yousefi
,
T.
,
Paknezhad
,
M.
,
Ashjaee
,
M.
, and
Yazdani
,
S.
,
2009
, “
Effects of Confining Walls on Heat Transfer From a Vertical Array of Isothermal Horizontal Elliptic Cylinders
,”
Exp. Therm. Fluid Sci.
,
33
(
6
), pp.
983
990
.10.1016/j.expthermflusci.2009.04.005
7.
Guha
,
A.
, and
Pradhan
,
K.
,
2014
, “
Natural Convection of Non-Newtonian Power-Law Fluids on a Horizontal Plate
,”
Int. J. Heat Mass Transfer
,
70
, pp.
930
938
.10.1016/j.ijheatmasstransfer.2013.11.001
8.
Mulamootil
,
J. K.
, and
Dash
,
S. K.
,
2017
, “
Numerical Investigation of Natural Convection Heat Transfer From an Array of Horizontal Fins in Non-Newtonian Power-Law Fluids
,”
ASME J. Heat Transfer
,
140
(
2
), p.
022501
.10.1115/1.4037537
9.
Sairamu
,
M.
, and
Chhabra
,
R. P.
,
2013
, “
Natural Convection in Power-Law Fluids From a Tilted Square in an Enclosure
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
319
339
.10.1016/j.ijheatmasstransfer.2012.09.033
10.
Gangawane
,
K. M.
, and
Manikandan
,
B.
,
2017
, “
Laminar Natural Convection Characteristics in an Enclosure With Heated Hexagonal Block for Non-Newtonian Power Law Fluids
,”
Chin. J. Chem. Eng.
,
25
(
5
), pp.
555
571
.10.1016/j.cjche.2016.08.028
11.
Turan
,
O.
,
Lai
,
J.
,
Poole
,
R. J.
, and
Chakraborty
,
N.
,
2013
, “
Laminar Natural Convection of Power-Law Fluids in a Square Enclosure Submitted From Below to a Uniform Heat Flux Density
,”
J. Non-Newtonian Fluid Mech.
,
199
, pp.
80
95
.10.1016/j.jnnfm.2013.06.002
12.
Darbouli
,
M.
,
Métivier
,
C.
,
Leclerc
,
S.
,
Nouar
,
C.
,
Bouteera
,
M.
, and
Stemmelen
,
D.
,
2016
, “
Natural Convection in Shear-Thinning Fluids: Experimental Investigations by MRI
,”
Int. J. Heat Mass Transfer
,
95
, pp.
742
754
.10.1016/j.ijheatmasstransfer.2015.12.056
13.
Abou-Ziyan
,
H.
,
Kalender
,
A.
,
Shedid
,
M.
, and
Abdel-Hameed
,
H.
,
2017
, “
Experimental Investigation of Free Convection From Short Horizontal Cylinder to Newtonian and Power-Law Liquids of Large Prandtl Numbers
,”
Exp. Therm. Fluid Sci.
,
86
, pp.
102
116
.10.1016/j.expthermflusci.2017.04.004
14.
Moradi
,
H.
,
Bazooyar
,
B.
,
Etemad
,
S. G.
, and
Moheb
,
A.
,
2015
, “
Influence of the Geometry of Cylindrical Enclosure on Natural Convection Heat Transfer of Newtonian Nanofluids
,”
Chem. Eng. Res. Des.
,
94
, pp.
673
680
.10.1016/j.cherd.2014.10.008
15.
Lemus-Mondaca
,
R. A.
,
Moraga
,
N. O.
, and
Riquelme
,
J.
,
2013
, “
Unsteady 2D Conjugate Natural Non-Newtonian Convection With Non-Newtonian Liquid Sterilization in Square Cavity
,”
Int. J. Heat Mass Transfer
,
61
, pp.
73
81
.10.1016/j.ijheatmasstransfer.2013.01.079
16.
Alsabery
,
A. I.
,
Chamkha
,
A. J.
,
Saleh
,
H.
, and
Hashim
,
I.
,
2017
, “
Transient Natural Convective Heat Transfer in a Trapezoidal Cavity Filled With Non-Newtonian Nanofluid With Sinusoidal Boundary Conditions on Both Sidewalls
,”
Powder Technol.
,
308
, pp.
214
234
.10.1016/j.powtec.2016.12.025
17.
Moraga
,
N. O.
,
Parada
,
G. P.
, and
Vasco
,
D. A.
,
2016
, “
Power Law Non-Newtonian Fluid Unsteady Conjugate Three Dimensional Natural Convection Inside a Vessel Driven by Surrounding Air Thermal Convection in a Cavity
,”
Int. J. Therm. Sci.
,
107
, pp.
247
258
.10.1016/j.ijthermalsci.2016.04.007
18.
Matin
,
M. H.
,
Pop
,
I.
, and
Khanchezar
,
S.
,
2013
, “
Natural Convection of Power-Law Fluid Between Two-Square Eccentric Duct Annuli
,”
J. Non-Newtonian Fluid Mech.
,
197
, pp.
11
23
.10.1016/j.jnnfm.2013.02.002
19.
Alloui
,
Z.
, and
Vasseur
,
P.
,
2015
, “
Natural Convection of Carreau–Yasuda Non-Newtonian Fluids in a Vertical Cavity Heated From the Sides
,”
Int. J. Heat Mass Transfer
,
84
, pp.
912
924
.10.1016/j.ijheatmasstransfer.2015.01.092
20.
Yigit
,
S.
,
Chen
,
S.
,
Quinn
,
P.
, and
Chakraborty
,
N.
,
2016
, “
Numerical Investigation of Laminar Rayleigh-Benard Convection of Bingham Fluids in Square Cross-Sectioned Cylindrical Enclosures
,”
Int. J. Therm. Sci.
,
110
, pp.
356
368
.10.1016/j.ijthermalsci.2016.07.013
21.
Kefayati
,
G. R.
,
2014
, “
Simulation of Non-Newtonian Molten Polymer on Natural Convection in a Sinusoidal Heated Cavity Using FDLBM
,”
J. Mol. Liq.
,
195
, pp.
165
174
.10.1016/j.molliq.2014.02.031
22.
Kefayati
,
G. R.
,
2014
, “
Simulation of Magnetic Field Effect on Natural Convection of Non-Newtonian Power-Law Fluids in a Sinusoidal Heated Cavity Using FDLBM
,”
Int. Commun. Heat Mass Transfer
,
53
, pp.
139
153
.10.1016/j.icheatmasstransfer.2014.02.026
23.
Kefayati
,
G. R.
,
2014
, “
FDLBM Simulation of Magnetic Field Effect on Natural Convection of Non-Newtonian Power-Law Fluids in a Linearly Heated Cavity
,”
Powder Technol.
,
256
, pp.
87
99
.10.1016/j.powtec.2014.02.014
24.
Chouikh
,
R.
,
Guizani
,
A.
,
Maalej
,
M.
, and
Belghith
,
A.
,
1998
, “
Numerical Study of the Laminar Natural Convection Flow Around Horizontal Isothermal Cylinder
,”
Renewable Energy
,
13
(
1
), pp.
77
88
.10.1016/S0960-1481(97)00073-6
25.
Farouk
,
B.
, and
Güçeri
,
S. I.
,
1981
, “
Natural Convection From a Horizontal Cylinder-Laminar Regime
,”
ASME J. Heat Transfer
,
103
(
3
), pp.
522
527
.10.1115/1.3244495
26.
Khozeymehnezhad
,
H.
, and
Mirbozorgi
,
S. A.
,
2012
, “
Comparison of Natural Convection Around a Circular Cylinder With a Square Cylinder Inside a Square Enclosure
,”
J. Mech. Eng. Autom.
,
2
(
6
), pp.
176
183
.10.5923/j.jmea.20120206.08
27.
Badr
,
H. M.
,
1997
, “
Laminar Natural Convection From an Elliptic Tube With Different Orientations
,”
ASME J. Heat Transfer
,
119
(
4
), pp.
709
718
.10.1115/1.2824175
28.
Shyam
,
R.
,
Sairamu
,
M.
,
Nirmalkar
,
N.
, and
Chhabra
,
R. P.
,
2013
, “
Free Convection From a Heated Circular Cylinder in Confined Power-Law Fluids
,”
Int. J. Therm. Sci.
,
74
, pp.
156
173
.10.1016/j.ijthermalsci.2013.06.005
29.
Tiwari
,
A. K.
, and
Chhabra
,
R. P.
,
2013
, “
Laminar Natural Convection in Power-Law Liquids From a Heated Semi-Circular Cylinder With Its Flat Side Oriented Downward
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
553
567
.10.1016/j.ijheatmasstransfer.2012.11.051
30.
Reymond
,
O.
,
Murray
,
D. B.
, and
O'Donovan
,
T. S.
,
2008
, “
Natural Convection Heat Transfer From Two Horizontal Cylinders
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1702
1709
.10.1016/j.expthermflusci.2008.06.005
31.
Sasmal
,
C.
, and
Chhabra
,
R. P.
,
2012
, “
Effect of Aspect Ratio on Natural Convection in Power-Law Liquids From a Heated Horizontal Elliptic Cylinder
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4886
4899
.10.1016/j.ijheatmasstransfer.2012.04.062
32.
Sasmal
,
C.
, and
Chhabra
,
R. P.
,
2011
, “
Laminar Natural Convection From a Heated Square Cylinder Immersed in Power-Law Liquids
,”
J. Non-Newtonian Fluid Mech.
,
166
(
14–15
), pp.
811
830
.10.1016/j.jnnfm.2011.04.013
33.
Versteeg
,
H. K.
,
1995
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Approach
,
Longman Scientific and Technical
,
Harlow, UK
.
34.
Shokouhmand
,
H.
, and
Noori Rahim Abadi
,
S. M. A.
,
2010
, “
Finite Element Analysis of Natural Heat Transfer From an Isothermal Array of Cylinders in Presence of Vertical Oscillations
,”
Heat Mass Transfer
,
46
(
8–9
), pp.
891
902
.10.1007/s00231-010-0645-z
35.
Shokouhmand
,
H.
,
Noori Rahim Abadi
,
S. M. A.
, and
Jafari
,
A.
,
2011
, “
The Effect of the Horizontal Vibrations on Natural Heat Transfer From an Isothermal Array of Cylinders
,”
Int. J. Mech. Mater. Des.
,
7
(
4
), pp.
313
326
.10.1007/s10999-011-9170-6
You do not currently have access to this content.