The hydrodynamic cavitation in a Venturi tube is studied both theoretically and experimentally. A lumped parameter model was developed to describe the accumulation and dissipation of energy in the biphasic flow as a function of the bubble population characteristics (mean volume, standard deviation, and void fraction). Resistance, capacitance, inductance, and frequency lumped-parameters were identified applying the fluid conservation equations (mass and momentum) along with electrical/hydraulic analogies. Experiments with 1,2-propanediol were carried out in a hydraulic circuit composed of valves, a pump, and a Venturi nozzle. The acoustic noise generated (at different cavitation regimes) by the passage of the fluid through the tube was acquired with a piezoelectric sensor. After processing the experimental signals, the system frequency at each operation condition was determined. Plausible estimations of the void fraction were obtained at different experimental frequencies by evaluating a theoretical expression of the frequency lumped-parameter. This semi-empirical technique might be a low-cost alternative when the void fraction of a flow needs to be determined and tomography devices are not available.

References

1.
Huang
,
X.
, and
Van Sciver
,
S. W.
,
1996
, “
Performance of a Venturi Flow Meter in Two-Phase Helium Flow
,”
Cryogenics
,
36
(
4
), pp.
303
309
.
2.
Elperin
,
T.
,
Fominykh
,
A.
, and
Klochko
,
M.
,
2002
, “
Performance of a Venturi Meter in Gas–Liquid Flow in the Presence of Dissolved Gases
,”
Flow Meas. Instrum.
,
13
(
1–2
), pp.
13
16
.
3.
Huang
,
Z.
,
Xie
,
D.
,
Zhang
,
H.
, and
Li
,
H.
,
2005
, “
Gas–Oil Two-Phase Flow Measurement Using an Electrical Capacitance Tomography System and a Venturi Meter
,”
Flow Meas. Instrum.
,
16
(
2–3
), pp.
177
182
.
4.
Meng
,
Z.
,
Huang
,
Z.
,
Whang
,
B.
,
Ji
,
H.
,
Li
,
H.
, and
Yan
,
Y.
,
2010
, “
Air–Water Two-Phase Flow Measurement Using a Venturi Meter and an Electrical Resistance Tomography Sensor
,”
Flow Meas. Instrum.
,
21
(
3
), pp.
268
276
.
5.
Ghassemi
,
H.
, and
Farshi
,
H.
,
2011
, “
Application of Small Size Cavitating Venturi as Flow Controller and Flow Meter
,”
Flow Meas. Instrum.
,
22
(
5
), pp.
406
412
.
6.
Ulas
,
A.
,
2006
, “
Passive Flow Control in Liquid-Propellant Rocket Engines With Cavitating Venture
,”
Flow Meas. Instrum.
,
17
(
6
), pp.
93
97
.
7.
Itano
,
E.
,
Shakal
,
A.
,
Martin
,
J.
,
Shears
,
D.
, and Edman, T.,
1996
, “
Carburetor Exit Flow Characteristics
,”
SAE Paper No. 961730
.
8.
Mishra
,
C.
, and
Peles
,
Y.
,
2006
, “
An Experimental Investigation of Hydrodynamic Cavitation in Micro-Venturis
,”
Phys. Fluids
,
18
(
10
), p.
103603
.
9.
Rudolf
,
P.
,
Hudec
,
M.
,
Griger
,
M.
, and
Stefan
,
D.
,
2014
, “
Characterization of the Cavitating Flow in Converging-Diverging Nozzle Based on Experimental Investigations
,”
EPJ Web Conf.
,
67
, p.
02101
.
10.
Mishra
,
C.
, and
Peles
,
Y.
,
2006
, “
Development of Cavitation in Refrigerant (R-123) Flow Inside Rudimentary Microfluidic Systems
,”
IEEE J. Microelectromech. Syst.
,
15
(
5
), pp.
1319
1329
.
11.
Bertoldi
,
D.
,
Dallalba
,
C. C. S.
, and
Barbosa
,
J. R.
,
2015
, “
Experimental Investigation of Two-Phase Flashing Flows of a Binary Mixture of Infinite Relative Volatility in a Venturi Tube
,”
Exp. Therm. Fluid Sci.
,
64
, pp.
152
163
.
12.
Medrano
,
M.
,
Pellone
,
C.
,
Zermatten
,
P. J.
, and
Ayela
,
F.
,
2012
, “
Hydrodynamic Cavitation in Microsystems—II: Simulations and Optical Observations
,”
Phys. Flow
,
24
(
4
), p.
047101
.
13.
Garcia
,
R.
,
Hammitt
,
F. G.
, and
Robinson
,
M. J.
,
1964
, “
Acoustic Noise From a Cavitating Venturi
,” Michigan University, Ann Arbor, MI, Technical Report No. 1.
14.
De
,
M. K.
, and
Hammitt
,
F. G.
,
1982
, “
Instrument System for Monitoring Cavitation Noise
,”
J. Phys. E: Sci. Instrum.
,
15
(
7
), pp.
741
745
.
15.
Griffin
,
B.
,
2015
, “
Cavitating Venturi Model Using Standard Element and Options in Commercially Available Lumped-Parameter Software
,”
AIAA
Paper No. 2015-3768.
16.
Alligné
,
S.
,
Decaix
,
J.
,
Müller
,
A.
,
Nicole
,
C.
,
Avellan
,
F.
, and
Münch
,
C.
,
2017
, “
RANS Computations for Identification of 1-D Cavitation Model Parameters: Application to Full Load Cavitation Vortex Rope
,”
J. Phys.: Conf. Ser.
,
813
(
1
), pp.
1
5
.
17.
Zuo
,
Z. G.
,
Li
,
S. C.
,
Carpenter
,
P. W.
, and
Li
,
S.
,
2006
, “
Cavitation Resonance on Warwick Venturi
,”
Sixth International Symposium on Cavitation
, Wageningen, The Netherlands, Sept. 11--15.
18.
Zuo
,
Z. G.
,
Li
,
S. C.
,
Liu
,
S. H.
,
Li
,
S.
, and
Chen
,
H.
,
2009
, “
An Attribution of Cavitation Resonance: Volumetric Oscillations of Cloud
,”
J. Hydrodyn.
,
21
(
2
), pp.
152
158
.
19.
Li
,
S. C.
,
Wu
,
Y. L.
,
Dai
,
J.
,
Zuo
,
Z. G.
, and
Li
,
S.
,
2006
, “
Cavitation Resonance: The Phenomenon and Unknown
,”
J. Hydrodyn.
,
18
(
3
), pp.
356
362
.
20.
Li
,
S. C.
,
Zuo
,
Z. G.
,
Liu
,
S. H.
,
Wu
,
Y. L.
, and
Li
,
S.
,
2008
, “
Cavitation Resonance
,”
ASME J. Fluid Mech.
,
130
(
3
), p.
031302
.
21.
Motohiki
,
M.
,
Shusaku
,
K.
,
Donghyuk
,
K.
,
Satoshi
,
Y.
,
Byungjin
,
A.
, and
Kazuhiko
,
Y.
,
2017
, “
Numerical Study of One Dimensional Pipe Flow Under Pump Cavitation Surge
,”
ASME
Paper No. FEDSM2017-69427.
22.
Shah
,
Y. G.
,
Vacca
,
A.
,
Dabiri
,
S.
, and
Frosina
,
E.
,
2017
, “
A Fast Lumped Parameter Approach for the Prediction of Both Aeration and Cavitation in Gerotor Pumps
,”
Mecc. Springer
,
52
(
8
), pp.
175
191
.
23.
Zhou
,
J.
,
Hu
,
J.
, and
Jing
,
C.
,
2016
, “
Lumped Parameter Modelling of Cavitating Orifice Flow in Hydraulic Systems
,”
J. Mech. Eng.
,
62
(
6
), pp.
373
380
.
24.
Yuan
,
S.
,
Zhou
,
J.
, and
Hu
,
J.
,
2015
, “
A Lumped Element Method for Modeling the Two-Phase Choking Flow Through Hydraulic Orifices
,”
Int. J. Heat Mass Transfer
,
81
, pp.
355
361
.
25.
Vojislav
,
K.
,
1988
,
State-Space Models of Lumped and Distributed Systems
,
Springer-Verlag
,
Berlin
, pp.
24
27
.
26.
Gordiychuk
,
A.
,
Svanera
,
M.
,
Benini
,
S.
, and
Poesio
,
P.
,
2016
, “
Size Distribution and Sauter Mean Diameter of Micro Bubbles for a Venturi Type Bubble Generator
,”
Exp. Therm. Fluid Sci.
,
70
, pp.
51
60
.
27.
Brennen
,
C. E.
,
2005
,
Fundamentals of Multiphase Flow
,
Cambridge University Press
,
New York
, pp.
25
27
.
28.
Can
,
F. D.
,
2013
,
Shock Wave Science and Technology Reference Library
,
Springer
,
Berlin
, pp.
205
234
.
29.
White
,
F. M.
,
2016
,
Fluid Mechanics
, 8th ed.,
McGraw-Hill
,
New York
, pp.
358
361
.
30.
Kozák
,
J.
,
Rudolf
,
P.
,
Štefan
,
D.
,
Hudec
,
M.
, and
Gríger
,
M.
,
2015
, “
Analysis of Pressure Pulsations of Cavitating Flow in Converging-Diverging Nozzle
,”
Sixth IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
, Ljubljana, Slovenia, Sept. 9–11.
You do not currently have access to this content.