The paper describes the results of recent experiments carried out in the Cavitating Pump Rotordynamic Test Facility for the dynamic characterization of cavitation-induced flow instabilities as simultaneously observed in the stationary and rotating frames of a high-head, three-bladed axial inducer with tapered hub and variable pitch. The flow instabilities occurring in the eye and inside the blading of the inducer have been detected, identified, and monitored by means of the spectral analysis of the pressure measurements simultaneously performed in the stationary and rotating frames by multiple transducers mounted on the casing near the inducer eye and on the inducer hub along the blade channels. An interaction between the unstable flows in the pump inlet and in the blade channels during cavitating regime has been detected. The interaction is between a low frequency axial phenomenon, which cyclically fills and empties each blade channel with cavitation, and a rotating phenomenon detected in the inducer eye.

References

1.
Jakobsen
,
J. K.
, and
Keller
,
R. B. J.
,
1971
,
Liquid Rocket Engine Turbopump Inducers
, National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH, p. 100.
2.
Stripling
,
L. B.
, and
Acosta
,
A. J.
,
1962
, “
Cavitation in Turbopumps—Part 1
,”
ASME J. Basic Eng
.,
84
(
3
), pp.
326
338
.
3.
Stripling
,
L. B.
,
1962
, “
Cavitation in Turbopumps—Part 2
,”
ASME J. Basic Eng.
,
84
(
3
), pp.
339
349
.
4.
RUBIN
,
S.
,
1966
, “
Longitudinal Instability of Liquid Rockets Due to Propulsion Feedback (POGO)
,”
J. Spacecr. Rockets
,
3
(
8
), pp.
1188
1195
.
5.
Sack
,
L. E.
, and
Nottage
,
H. B.
,
1965
, “
System Oscillations Associated With Cavitating Inducers
,”
ASME J. Basic Eng.
,
87
(
4
), pp.
917
924
.
6.
Rosenmann
,
W.
,
1965
, “
Experimental Investigations of Hydrodynamically Induced Shaft Forces With a Three Bladed Inducer
,” National Aeronautics and Space Administration, Washington, DC, p. 24.
7.
Natanzon
,
M. S.
,
Bal'tsev
,
N. I.
,
Bazhanov
,
V. V.
, and
Leydervarger
,
M. R.
,
1974
, “
Experimental Investigation of Cavitation-Induced Oscillations of Helical Inducers
,”
Fluid Mech. Sov. Res.
,
3
(1), pp.
38
45
.
8.
BRENNEN
,
C.
, and
ACOSTA
,
A. J.
,
1973
, “
Theoretical, Quasi-Static Analysis of Cavitation Compliance in Turbopumps
,”
J. Spacecr. Rockets
,
10
(
3
), pp.
175
180
.
9.
Brennen
,
C.
, and
Acosta
,
A. J.
,
1976
, “
The Dynamic Transfer Function for a Cavitating Inducer
,”
ASME J. Fluids Eng.
,
98
(
2
), pp.
182
191
.
10.
Ng
,
S. L.
, and
Brennen
,
C.
,
1978
, “
Experiments on the Dynamic Behavior of Cavitating Pumps
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
166
176
.
11.
Braisted, D. M., 1980, “
Cavitation Induced Instabilities Associated with Turbomachines
,”
Ph.D. dissertation
, California Institute of Technology, Pasadena, CA.http://resolver.caltech.edu/CaltechETD:etd-04232004-091330
12.
Franz, R. J., 1989, “
Experimental Investigation of the Effect of Cavitation on the Rotordynamic Forces on a Whirling Centrifugal Pump Impeller
,”
Ph.D. dissertation
, California Institute of Technology, Pasadena, CA.http://resolver.caltech.edu/CaltechETD:etd-02022007-133417
13.
Bhattacharyya, A.,1994, “
Internal Flows and Force Matrices in Axial Flow Inducers
,”
Ph.D. dissertation
, California Institute of Technology, Pasadena, CA.http://resolver.caltech.edu/CaltechETD:etd-03012005-141633
14.
Bhattacharyya
,
A.
,
Acosta
,
A. J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
,
1997
, “
Rotordynamic Forces in Cavitating Inducers
,”
ASME J. Fluids Eng.
,
119
(
4
), pp. 768–774.
15.
Cervone
,
A.
,
Testa
,
R.
,
Bramanti
,
C.
,
Rapposelli
,
E.
, and
D'Agostino
,
L.
,
2005
, “
Thermal Effects on Cavitation Instabilities in Helical Inducers
,”
J. Propuls. Power
,
21
(
5
), pp.
893
899
.
16.
Cervone
,
A.
,
Bramanti
,
C.
,
Rapposelli
,
E.
,
Torre
,
L.
, and
d'Agostino
,
L.
,
2006
, “
Experimental Characterization of Cavitation Instabilities in a Two-Bladed Axial Inducer
,”
J. Propuls. Power
,
22
(
6
), pp.
1389
1395
.
17.
Torre
,
L.
,
Cervone
,
A.
,
Pasini
,
A.
, and
d'Agostino
,
L.
,
2011
, “
Experimental Characterization of Thermal Cavitation Effects on Space Rocket Axial Inducers
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111303
.
18.
Pace
,
G.
,
Valentini
,
D.
,
Pasini
,
A.
,
Torre
,
L.
,
Fu
,
Y.
, and
d'Agostino
,
L.
,
2015
, “
Geometry Effects on Flow Instabilities of Different Three-Bladed Inducers
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041304
.
19.
Brennen
,
C. E.
,
1994
,
Hydrodynamics of Pumps
,
Concepts ETI, Inc. and Oxford University Press
.
20.
Franc
,
J.-P.
,
2001
, “
Partial Cavity Instabilities and Re-Entrant Jet
,” Fourth International Symposium on Cavitation (CAV), California Institute of Technology, Pasadena, CA, June 20–23.
21.
d'Agostino
,
L.
,
2013
, “
Turbomachinery Developments and Cavitation
,” VKI Lecture Series on Fluid Dynamics Associated to Launcher Developments, von Karman Institute of Fluid Dynamics, Rhode-Saint-Genese, Belgium, STO-AVT-LS-206, Paper NBR 12-1, Invited Lecture.
22.
d'Agostino
,
L.
, and
Salvetti
,
M. V.
,
2017
,
Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines: Turbopump and Inducer Cavitation, Experiments and Design
,
L.
d'Agostino
, and
M. V.
Salvetti
, eds., Springer International Publishing, Cham, Switzerland.
23.
Yoshida
,
Y.
,
Kikuta
,
K.
,
Watanabe
,
M.
,
Hashimoto
,
T.
,
Nagaura
,
K.
, and
Ohira
,
K.
,
2006
,
Thermodynamic Effect on Cavitation Performances and Cavitation Instabilities in an Inducer
,
Wageningen
,
The Netherlands
.
24.
Yoshida
,
Y.
,
Sasao
,
Y.
,
Okita
,
K.
,
Hasegawa
,
S.
,
Shimagaki
,
M.
, and
Ikohagi
,
T.
,
2007
, “
Influence of Thermodynamic Effect on Synchronous Rotating Cavitation
,”
ASME J. Fluids Eng.
,
129
(
7
), pp.
871
876
.
25.
Yoshida
,
Y.
,
Kikuta
,
K.
,
Hasegawa
,
S.
,
Shimagaki
,
M.
, and
Tokumasu
,
T.
,
2006
, “
Thermodynamic Effect on a Cavitating Inducer in Liquid Nitrogen
,”
ASME J. Fluids Eng.
,
129
(
3
), pp.
273
278
.
26.
Fujii
,
A.
,
Azuma
,
S.
,
Yoshida
,
Y.
,
Tsujimoto
,
Y.
,
Horiguchi
,
H.
, and
Watanabe
,
S.
,
2004
, “
Higher Order Rotating Cavitation in an Inducer
,”
Int. J. Rotating Mach.
,
10
(4), pp. 241–251.
27.
Rapposelli
,
E.
,
Cervone
,
A.
, and
d'Agostino
,
L.
, “
A New Cavitating Pump Rotordynamic Test Facility
,”
AIAA
Paper No. 2002-4285.
28.
Pace
,
G.
,
Pasini
,
A.
,
Torre
,
L.
,
Valentini
,
D.
, and
d'Agostino
,
L.
,
2012
, “
Cavitating Pump Rotordynamic Test Facility at ALTA S.p.A.: Upgraded Capabilities of a Unique Test Rig
,”
2012 Space Propulsion Conference
, Bordeaux, France, May 7–10.
29.
Cervone
,
A.
,
Torre
,
L.
,
Pasini
,
A.
, and
d'Agostino
,
L.
,
2009
, “
Cavitation and Flow Instabilities in a 3- Bladed Axial Inducer Designed by Means of a Reduced Order Analytical Model
,”
Proceedings of the 7th International Symposium on Cavitation
, Ann Arbor, MI, Aug. 16–20.
30.
Torre
,
L.
,
Pace
,
G.
,
Miloro
,
P.
,
Pasini
,
A.
,
Cervone
,
A.
, and
d'Agostino
,
L.
,
2010
, “
Flow Instabilities on a Three Bladed Axial Inducer at Variable Tip Clearance
,”
13th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Apr. 4–7.
31.
Pasini
,
A.
,
Torre
,
L.
,
Cervone
,
A.
, and
d'Agostino
,
L.
,
2011
, “
Continuous Spectrum of the Rotordynamic Forces on a Four Bladed Inducer
,”
ASME J. Fluids Eng.
,
133
(
12
), p.
121101
.
32.
Pace
,
G.
,
Valentini
,
D.
,
Pasini
,
A.
,
Torre
,
L.
,
Hadavandi
,
R.
, and
d'Agostino
,
L.
,
2017
, “
Inducer and Centrifugal Pump Contributions to the Rotordynamic Fluid Forces Acting on a Space Turbopump
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021104
.
33.
Valentini
,
D.
,
Pace
,
G.
,
Pasini
,
A.
,
Torre
,
L.
,
Hadavandi
,
R.
, and
d'Agostino
,
L.
,
2017
, “
Fluid-Induced Rotordynamic Forces on a Whirling Centrifugal Pump
,”
Eur. J. Mech. - BFluids
,
61
, pp.
336
345
.
34.
Fu
,
Y.
,
Yuan
,
J.
,
Yuan
,
S.
,
Pace
,
G.
, and
d'Agostino
,
L.
,
2017
, “
Effect of Tip Clearance on the Internal Flow and Hydraulic Performance of a Three-Bladed Inducer
,”
Int. J. Rotating Mach.
,
2017
, p. 10.
35.
Pace
,
G.
,
Valentini
,
D.
,
Torre
,
L.
,
Pasini
,
A.
, and
d'Agostino
,
L.
,
2014
, “
Experimental Characterization of Rotordynamic Forces Acting on Space Turbopumps
,” 2014 Space Propulsion Conference, Cologne, Germany, May 19–22.
36.
Cilmo
,
M.
,
Hadavandi
,
R.
,
Pellegrini
,
G.
,
de Palo
,
M.
,
Valentini
,
D.
,
Pace
,
G.
,
Pasini
,
A.
, and
d'Agostino
,
L.
,
2018
, “
Latest Activities on Turbopumps at Sitael With an on Board Acquisition System
,”
Space Propulsion
, Seville, Spain, May 14–18.
37.
d'Agostino
,
L.
,
Torre
,
L.
,
Pasini
,
A.
, and
Cervone
,
A.
,
2008
, “
A Reduced Order Model for Preliminary Design and Performance Prediction of Tapered Inducers
,” The 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (
ISROMAC12
), Honolulu, HI, Feb. 17–22, pp. 1–10.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.467.8180&rep=rep1&type=pdf
38.
d'Agostino
,
L.
,
Torre
,
L.
,
Pasini
,
A.
, and
Cervone
,
A.
,
2008
, “
On the Preliminary Design and Noncavitating Performance Prediction of Tapered Axial Inducers
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111303
.
39.
Pace
,
G.
,
Cervone
,
A.
,
Torre
,
L.
,
Pasini
,
A.
,
Bartolini
,
S.
,
Agnesi
,
L.
, and
d'Agostino
,
L.
,
2012
, “
Effects of the Leading Edge Shape on the Performance of an Axial Three Bladed Inducer
,”
14th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(
ISROMAC-14
), Honolulu, HI, Feb. 27–Mar. 2, pp. 1–8.https://www.researchgate.net/publication/277890731_Effects_of_the_Leading_Edge_Shape_on_the_Performance_of_an_Axial_Three_Bladed_Inducer
40.
Torre
,
L.
,
Pasini
,
A.
,
Cervone
,
A.
,
Pace
,
G.
,
Miloro
,
P.
, and
D'Agostino
,
L.
,
2011
, “
Effect of Tip Clearance on the Performance of a Three-Bladed Axial Inducer
,”
J. Propuls. Power
,
27
(
4
), pp.
890
898
.
You do not currently have access to this content.