The aim of the current study is to investigate the effect of inlet blade angles on cavitation performance in a centrifugal pump. In order to reveal this relationship, both hub and shroud blade angles are considered and a two-phase three-dimensional computational fluid dynamics (CFD) study is carried out. Shear stress transport (SST) turbulence and Rayleigh–Plesset cavitation models are used in simulations. Inlet blade angles for both hub and shroud are changed and pump performance (head-discharge) and cavitation (head-inlet pressure) graphs are obtained for eight different designs. Afterward, numerical cavitation tests are conducted, required net positive suction head values of the each design are calculated, and variations are demonstrated. Results show that hub and shroud blade angle variations have no significant effect on the pump characteristic curves excluding for shroud blade angle at high discharge values. However, cavitation performance of the pump is excessively affected for both hub and shroud blade angle alterations. Increasing hub blade angle has slightly negative effect on cavitation performance of the pump. On the other hand, while increasing shroud blade angle from 20 deg to 30 deg have positive effect on cavitation performance, it is negatively affected from 30 deg to 50 deg.

References

1.
Hofmann
,
M.
,
Stoffel
,
B.
,
Friedrichs
,
J.
, and
Kosyna
,
G.
,
2001
, “
Similarities and Geometrical Effects on Rotating Cavitation in Two Scaled Centrifugal Pumps
,”
Fourth International Symposium on Cavitation
(
CAV 2011
), California Institute of Technology, Pasadena, CA, June 20–23.http://resolver.caltech.edu/CAV2001:sessionB8.001
2.
Iga
,
Y.
,
Nohml
,
M.
,
Goto
,
A.
, and
Ikohaji
,
T.
,
2004
, “
Numerical Analysis of Cavitation Instabilities Arising in the Three-Blade Cascade
,”
ASME J. Fluid. Eng.
,
126
(
3
), pp.
419
429
.
3.
Kyparissis
,
S. D.
, and
Margaris
,
D. P.
,
2012
, “
Experimental Investigation and Passive Flow Control of a Cavitating Centrifugal Pump
,”
Int. J. Rotating Mach.
,
2012
, p. 8.
4.
Kang
,
C.
,
Mao
,
N.
,
Zhang
,
W.
, and
Gu
,
Y.
,
2017
, “
The Influence of Blade Configuration on Cavitation Performance of a Condensate Pump
,”
Ann. Nucl. Energy
,
110
, pp.
789
797
.
5.
Fu
,
Q.
,
Zhang
,
F.
,
Zhu
,
R.
, and
Heb
,
B.
,
2016
, “
A Systematic Investigation on Flow Characteristics of Impeller Passage in a Nuclear Centrifugal Pump Under Cavitation State
,”
Ann. Nucl. Energy
,
97
, pp.
190
197
.
6.
Mani
,
K. W.
,
Cervone
,
A.
, and
Hickey
,
J.
,
2017
, “
Turbulence Modeling of Cavitating Flows in Liquid Rocket Turbopumps
,”
ASME J. Fluid. Eng.
,
139
(
1
), p.
011301
.
7.
Ye
,
Y.
,
Zhu
,
X.
,
Lai
,
F.
, and
Li
,
G.
,
2017
, “
Application of the Semi-Analytical Cavitation Model to Flows in a Centrifugal Pump
,”
Int. Commun. Heat Mass
,
86
, pp.
92
100
.
8.
Zhang
,
F.
,
Yuan
,
S.
,
Fu
,
Q.
,
Pei
,
J.
,
Böhle
,
M.
, and
Jiang
,
X.
,
2017
, “
Cavitation-Induced Unsteady Flow Characteristics in the First Stage of a Centrifugal Charging Pump
,”
ASME J. Fluid. Eng.
,
138
(
1
), p.
011303
.
9.
Lorusso
,
M.
,
Capurso
,
T.
,
Torresi
,
M.
,
Fortunato
,
B.
,
Fornarelli
,
F.
,
Camporeale
,
S. M.
, and
Monteriso
,
R.
,
2017
, “
Efficient CFD Evaluation of the NPSH for Centrifugal Pumps
,”
Energy Procedia
,
126
, pp.
778
785
.
10.
Li
,
W.
,
2016
, “
Modeling Viscous Oil Cavitating Flow in a Centrifugal Pump
,”
ASME J. Fluid. Eng.
,
138
(
1
), p.
011303
.
11.
Siddique
,
M. H.
,
Bellary
,
S. A. I.
,
Samad
,
A.
,
Kim
,
J.
, and
Choi
,
Y.
,
2017
, “
Experimental and Numerical Investigation of the Performance of a Centrifugal Pump When Pumping Water and Light Crude Oil
,”
Arab. J. Sci. Eng.
,
42
(
11
), pp.
4605
4615
.
12.
Yokoyama
,
S.
,
1960
, “
Effect of the Tip Shape at Entrance of the Impeller Vane of the Centrifugal Pump on Cavitation
,”
Bull. Jpn. Soc. Mech. Eng.
,
3
(
11
), pp.
326
332
.
13.
Vujanic
,
V.
, and
Velensek
,
B.
,
1994
, “
Influence of Cavitation on Blade Characteristics
,”
Exp. Fluids
,
17
(
6
), pp.
441
445
.
14.
Christopher
,
S.
, and
Kumaraswamy
,
S.
,
2013
, “
Identification of Critical Net Positive Suction Head From Noise and Vibration in a Radial Flow Pump for Different Leading Edge Profiles of the Vane
,”
ASME J. Fluids Eng.
,
135
(
12
), p.
121301
.
15.
Friedrichs
,
J.
, and
Kosyna
,
G.
,
2002
, “
Rotating Cavitation in a Centrifugal Pump Impeller of Low Specific Speed
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
356
362
.
16.
Gaetani
,
P.
,
Boccazzi
,
A.
, and
Sala
,
R.
,
2012
, “
Low Field in the Vaned Diffuser of a Centrifugal Pump at Different Vane Setting Angles
,”
ASME J. Fluids Eng.
,
134
(
3
), p.
031101
.
17.
Luo
,
X.
,
Zhang
,
Y.
,
Peng
,
J.
,
Xu
,
H.
, and
Yu
,
W.
,
2008
, “
Impeller Inlet Geometry Effect on Performance Improvement for Centrifugal Pumps
,”
J. Mech. Sci. Technol.
,
22
(
10
), pp.
1971
1976
.
18.
Bonaiuti
,
D.
,
Zangeneh
,
M.
,
Aartojarvi
,
R.
, and
Eriksson
,
J.
,
2014
, “
Parametric Design of a waterjet Pump by Means of Inverse Design, CFD Calculations and Experimental Analyses
,”
ASME J. Fluids Eng.
,
132
(
3
), p.
031104
.
19.
Caridad
,
J.
,
Kenyery
,
F.
,
Tremante
,
A.
, and
Aguillon
,
O.
,
2008
, “
Characterization of a Centrifugal Pump Impeller Under Two-Phase Flow Conditions
,”
J. Pet. Sci. Eng.
,
63
(
1–4
), pp.
18
22
.
20.
Guo
,
X.
,
Zhu
,
L.
,
Zhu
,
Z.
,
Cui
,
B.
, and
Li
,
Y.
,
2015
, “
Numerical and Experimental Investigations on the Cavitation Characteristics of a High-Speed Centrifugal Pump With a Splitter-Blade Inducer
,”
J. Mech. Sci. Technol.
,
29
(
1
), pp.
259
267
.
21.
Pei
,
J.
,
Yin
,
T.
,
Yuan
,
S.
,
Wang
,
W.
, and
Wang
,
J.
,
2017
, “
Cavitation Optimization for a Centrifugal Pump Impeller by Using Orthogonal Design of Experiment
,”
Chin. J. Mech. Eng.
,
30
(
1
), pp.
103
109
.
22.
Neumann
,
M.
,
Schafer
,
T.
,
Bieberle
,
A.
, and
Hampel
,
U.
,
2016
, “
An Experimental Study on the Gas Entrainment in Horizontally and Vertically Installed Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091301
.
23.
Tan
,
L.
,
Yu
,
Z.
,
Xu
,
Y.
,
Liu
,
Y.
, and
Cao
,
S.
,
2017
, “
Role of Blade Rotational Angle on Energy Performance and Pressure Fluctuation of a Mixed-Flow Pump
,”
Proc. Inst. Mech. Eng. A
,
231
(
3
), pp.
227
238
.
24.
Xu
,
Y.
,
Tan
,
L.
,
Cao
,
S.
, and
Qu
,
W.
,
2016
, “
Multiparameter and Multiobjective Optimization Design of Centrifugal Pump Based on Orthogonal Method
,”
Proc. Inst. Mech. Eng. C
,
231
(
14
), pp.
2569
2579
.
25.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Fourth International Symposium on Turbulence Heat and Mass Transfer
, Antalya, Turkey, Oct. 12–17, pp. 626–627.
26.
Hirschi
,
R.
,
Dupont
,
P.
,
Avellan
,
F.
,
Favre
,
J.-N.
,
Guelich
,
J.-N.
, and
Parkinson
,
E.
,
1998
, “
Centrifugal Pump Performance Drop Due to Leading Edge Cavitation: Numerical Predictions Compared With Model Tests
,”
ASME J. Fluids Eng.
,
120
(
4
), pp.
705
711
.
27.
Fu
,
Y.
,
Yuan
,
J.
,
Yuan
,
S.
,
Pace
,
G.
,
d'Agostino
,
L.
,
Huang
,
P.
, and
Li
,
X.
,
2015
, “
Numerical and Experimental Analysis of Flow Phenomena in a Centrifugal Pump Operating Under Low Flow Rates
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011102
.
28.
Gerber
,
A. G.
,
2002
, “
A CFD Model for Devices Operating Under Extensive Cavitation Conditions
,”
ASME
Paper No. IMECE2002-39315
.
29.
Li
,
X. J.
,
Yuan
,
S. Q.
,
Pan
,
Z. Y.
,
Yuan
,
J. P.
, and
Fu
,
Y. X.
,
2013
, “
Numerical Simulation of Leading Edge Cavitation Within the Whole Flow Passage of a Centrifugal Pump
,”
Sci. China Technol. Sci.
,
56
(
9
), pp.
2156
2162
.
30.
Tan
,
L.
,
Zhu
,
B. S.
,
Cao
,
S. L.
,
Wang
,
Y. C.
, and
Wang
,
B. B.
,
2014
, “
Numerical Simulation of Unsteady Cavitation Flow in a Centrifugal Pump at Off-Design Conditions
,”
Proc. Inst. Mech. Eng. C
,
228
(
11
), pp.
1994
2006
.
31.
Tan
,
L.
,
Zhu
,
B.
,
Wang
,
Y.
,
Cao
,
S.
, and
Gui
,
S.
,
2015
, “
Numerical Study on Characteristics of Unsteady Flow in a Centrifugal Pump Volute at Partial Load Condition
,”
Eng. Comput.
,
32
(
6
), pp.
1549
1566
.
32.
Zhu
,
B.
, and
Chen
,
H.
,
2017
, “
Analysis of the Staggered and Fixed Cavitation Phenomenon Observed in Centrifugal Pumps Employing a Gap Drainage Impeller
,”
ASME J. Fluids Eng.
,
139
(
3
), p.
031301
.
33.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
(
ICMF 2004
), Yokohama, Japan, May 30–June 3, p. 3.https://www.scribd.com/document/349938518/A-Two-Phase-Model-Cavitation
34.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
.
You do not currently have access to this content.