The effect of apex flap and tip flap, deflected both independently and jointly, on the vortex flow and lift generation of a 65 deg-sweep delta wing was investigated experimentally. The drooped apex flap produced a higher lift at medium-to-high angle of attack regime and also a delayed stall. The anhedral (introduced by the downward tip flap) generally promoted lift increment, whereas dihedral had the opposite effect. Meanwhile, the joint apex and tip flap deflection gave a delayed leading-edge vortex (LEV) breakdown and an enhanced lift. The LEVs were generally drawn closer to the wing upper surface, while being pushed further away from the wing centerline by the application of apex flap and tip flap. The flap also modified the vorticity distribution in the LEV; the bursting behavior was, however, not affected. Dye-injection flow visualization and particle image velocimetry (PIV) measurements of the vortex flow were also discussed.

References

1.
Liu
,
T.
,
Makhmalbaf
,
M.
,
Ramasamy
,
R.
,
Kode
,
S.
, and
Merati
,
P.
,
2015
, “
Skin Friction Fields and Surface Dye Patterns on Delta Wings in Water Flows
,”
ASME J. Fluids Eng.
,
137
(
7
), p.
071202
.
2.
Wang
,
F. Y.
,
Milanovic
,
I. M.
,
Zaman
,
K. B.
, and
Povinelli
,
L. A.
,
2005
, “
A Quantitative Comparison of Delta Wing Vortices in the Near-Wake for Incompressible and Supersonic Free Streams
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1071
1084
.
3.
Morton
,
S.
,
Forsythe
,
J.
,
Mitchell
,
A.
, and
Hajek
,
D.
,
2002
, “
Detached-Eddy Simulations and Reynolds-Averaged Navier-Stokes Simulations of Delta Wing Vortical Flowfields
,”
ASME J. Fluids Eng.
,
124
(
4
), pp.
924
932
.
4.
Rao
,
D. M.
, and
Huffman
,
J. K.
,
1982
, “
Hinged Strakes for Enhanced Maneuverability at High Angles of Attack
,”
J. Aircraft
,
19
(
4
), pp.
278
282
.
5.
Panton
,
R. L.
,
1990
, “
Effects of a Contoured Apex on Vortex Breakdown
,”
J. Aircraft
,
27
(
3
), pp.
285
288
.
6.
Lowson
,
M. V.
, and
Riley
,
A. J.
,
1995
, “
Vortex Breakdown Control by Delta Wing Geometry
,”
J. Aircraft
,
32
(
4
), pp.
832
838
.
7.
Klute
,
S. M.
,
Rediniostis
,
O. K.
, and
Telionis
,
D. P.
,
1996
, “
Flow Control Over a Maneuvering Delta Wing at High Angles of Attack
,”
AIAA J.
,
34
(
4
), pp.
662
668
.
8.
Wang
,
J. J.
,
Xu
,
Y.
, and
Li
,
Y. C.
,
2002
, “
Experimental Studies on the Aerodynamic Characteristics of a 70-Degree Delta Wing With Apex Flap
,”
Experiments and Measurements in Fluid Mechanics
,
2
, pp.
52
56
.
9.
Marchman
,
J. F.
,
1981
, “
Aerodynamics of Inverted Leading-Edge Flaps on Delta Wings
,”
J. Aircraft
,
18
(
12
), pp.
1051
1056
.
10.
Deng
,
Q.
, and
Gursul
,
I.
,
1996
, “
Effect of Leading-Edge Flaps on Vortices and Vortex Breakdown
,”
J. Aircraft
,
33
(
6
), pp.
1079
1086
.
11.
Gu
,
W.
,
Robinson
,
O.
, and
Rockwell
,
D.
,
1993
, “
Control of Vortices on a Delta Wing by Leading-Edge Injection
,”
AIAA J.
,
31
(
7
), pp.
1177
1186
.
12.
Helin
,
H. E.
, and
Waltry
,
C. W.
,
1994
, “
Effects of Trailing-Edge Jet Entrainment on Delta Wing Vortices
,”
AIAA J.
,
32
(
4
), pp.
802
804
.
13.
Miyaji
,
K.
,
Fujiii
,
K.
, and
Karashima
,
K.
,
1996
, “
Enhancement of the Lateral Leading-Edge Separation Vortices by Trailing-Edge Lateral Blowing
,”
AIAA J.
,
34
(
9
), pp.
1943
1945
.
14.
Badarn
,
B.
,
McCormick
,
S.
, and
Gursul
,
I.
,
1998
, “
Control of Leading-Edge Vortices With Suction
,”
J. Aircraft
,
35
(
1
), pp.
163
165
.
15.
Mitchell
,
A. M.
,
Barberis
,
D.
,
Molton
,
P.
, and
Delery
,
J.
,
2002
, “
Control of Leading-Edge Vortex Breakdown by Trailing-Edge Injection
,”
J. Aircraft
,
39
(
2
), pp.
221
226
.
16.
Wahls
,
R. A.
,
Vess
,
R. J.
, and
Moskovitz
,
C. A.
,
1986
, “
Experimental Investigation of Apex Fence Flaps on Delta Wings
,”
J. Aircraft
,
23
(
10
), pp.
789
797
.
17.
Zhan
,
J. X.
, and
Wang
,
J. J.
,
2004
, “
Experimental Study on Gurney Flap and Apex Flap on a Delta Wing
,”
J. Aircraft
,
41
(
6
), pp.
1379
1383
.
18.
Traub
,
L. W.
,
2000
, “
Aerodynamic Characteristics of Spanwise Cambered Delta Wings
,”
J. Aircraft
,
37
(
4
), pp.
714
724
.
19.
Lee
,
G.-B.
,
Shih
,
C.
,
Tai
,
Y.-C.
,
Tsao
,
T.
,
Liu
,
C.
,
Huang
,
A.
, and
Ho
,
C.-M.
,
2000
, “
Robust Vortex Control of a Delta Wing by Distributed Micro Electro Mechanical-Systems Actuators
,”
J. Aircraft
,
37
(
4
), pp.
697
706
.
20.
Lee
,
T.
,
2016
, “
Impact of Gurney Flaplike Strips on the Aerodynamic and Vortex Flow Characteristic of a Reverse Delta Wing
,”
ASME J. Fluids Eng.
,
138
(6), p.
061104
.
21.
Jobe
,
C. E.
,
2004
, “
Vortex Breakdown Location Over 65 Degrees Delta Wings Empiricism and Experiment
,”
Aeronaut. J.
,
108
(
7
), pp.
475
482
.
22.
Skow
,
A. M.
, and
Erickson
,
G. E.
,
1982
, “
Modern Fighter Aircraft Design for High-Angle-of-Attack Maneuvering
,” AGARD-LS-121, pp.
4-1
4-59
.
23.
Huang
,
X. Z.
,
Sun
,
Y. Z.
, and
Hanff
,
E. S.
,
1997
, “
Further Investigations of Leading-Edge Vortex Breakdown Over Delta Wings
,”
AIAA
Paper No. 97-2263.
24.
Lambourne
,
N. C.
, and
Bryer
,
D. W.
,
1961
, “
The Bursting of Leading-Edge Vortices: Some Observations and Discussion of the Phenomenon
,” Aeronautical Research Council of Great Britain, Memoranda No. 3282.
25.
Thompson
,
D. H.
,
1975
, “
A Water Tunnel Study of Vortex Breakdown Over Wings With Highly Swept Leading Edges
,” Australian Defence Scientific Service, Note ARL/A 356.
26.
Payne
,
F. M.
,
Ng
,
T. T.
, and
Nelson
,
R. C.
,
1988
, “
Visualization and Wake Surveys of Vortical Flow Over a Delta Wing
,”
AIAA J.
,
26
(
2
), pp.
137
143
.
You do not currently have access to this content.