Cavitating flow in nozzles is a complex flow which implies a highly turbulent two-phase one. An accurate simulation which improves some numerical results found in the literature was achieved by means of an extensive analysis of the capabilities of several numerical models for turbulence and cavitation. The analysis performed involves calibration/optimization tasks based on the physics of this kind of flow. This work aims to provide a quantitative criterion for the judgment of internal flow state, because it was demonstrated that the numerical results obtained with noncalibrated models could be enhanced by means of a careful calibration and thus saving computational costs.
Issue Section:
Multiphase Flows
References
1.
Ardnt
, R.
, 2002
, “Cavitation in Vortical Flows
,” Annu. Rev. Fluid Mech.
, 34
, pp. 143
–175
.2.
Brennen
, C.
, 1995
, Cavitation and Bubble Dynamics
, Oxford University Press
, New York
.3.
Knapp
, R.
, Daily
, J.
, and Hammit
, F.
, 1970
, Cavitation
, McGraw-Hill
, New York
.4.
Kubota
, A.
, Kato
, H.
, and Yamaguchi
, H.
, 1992
, “A New Modeling of Cavitating Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section
,” J. Fluid Mech.
, 240
, pp. 59
–96
.5.
Singhal
, A.
, Athavale
, M.
, Li
, H.
, and Jiang
, Y.
, 2002
, “Mathematical Basis and Validation of Full Cavitation Model
,” ASME J. Fluids Eng.
, 124
(3
), pp. 617
–624
.6.
Zwart
, J.
, Gerber
, A.
, and Belamri
, T.
, 2004
, “Two-Phase Flow Model for Predicting Cavitation Dynamics
,” 5th International Conference on Multiphase Flow
, Yokohama, Japan, Paper No. 152.7.
Kozubková
, M.
, Rautová
, J.
, and Bojko
, M.
, 2012
, “Mathematical Model of Cavitation and Modeling of Fluid Flow in Cone
,” Procedia Eng.
, 39
, pp. 9
–18
.8.
Hammit
, F.
, 1980
, Cavitation and Multiphase Flow Phenomena
, McGraw-Hill
, New York
.9.
Franc
, J.
, and Michel
, J.
, 2004
, Fundamentals of Cavitation
, Kluwer Academic
, New York
.10.
Echouchene
, F.
, Belmabrouk
, H.
, Le Penven
, L.
, and Buffat
, M.
, 2011
, “Numerical Simulation of Wall Roughness Effects in Cavitating Flow
,” Int. J. Heat Fluid Flow
, 32
(5
), pp. 1068
–1075
.11.
Peters
, A.
, Sagar
, H.
, Lantermann
, U.
, and Moctar
, O.
, 2015
, “Numerical Modeling and Prediction of Cavitation Erosion
,” Wear
, 338–339
, pp. 189
–201
.12.
Duan
, L.
, Yuan
, S.
, Hub
, L.
, Yang
, W.
, Yu
, J.
, and Xia
, X.
, 2016
, “Injection Performance and Cavitation Analysis of an Advanced 250 MPa Common Rail Diesel Injector
,” Int. J. Heat Mass Transfer
, 93
, pp. 388
–397
.13.
Sou
, A.
, Biçer
, B.
, and Tomiyama
, A.
, 2014
, “Numerical Simulation of Incipient Cavitation Flow in a Nozzle of Fuel Injector
,” Comput. Fluid
, 103
, pp. 42
–48
.14.
Nurick
, W.
, 1976
, “Orifice Cavitation and Its Effect on Spray Mixing
,” ASME J. Fluids Eng.
, 98
(4
), pp. 681
–687
.15.
Peterson
, F.
, 1977
, “Discussion: Orifice Cavitation and Its Effect on Spray Mixing
,” ASME J. Fluids Eng.
, 99
(2
), pp. 426
–427 (Nurick, W. H., 1976, J. Fluids Eng. 98(2), 681–687).16.
Callenaere
, M.
, Franc
, J.
, Michel
, J.
, and Riondet
, M.
, 2001
, “The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,” J. Fluid Mech.
, 444
, pp. 223
–256
.17.
Stutz
, B.
, and Reboud
, J.
, 1997
, “Two Phase Flow Structure of Sheet Cavitation
,” Phys. Fluids
, 9
(12
), pp. 3678
–3686
.18.
Stutz
, B.
, and Reboud
, J.
, 1997
, “Experiment on Unsteady Cavitation
,” Exp. Fluids
, 22
(3
), pp. 191
–198
.19.
Stutz
, B.
, and Reboud
, J.
, 2000
, “Measurements Within Unsteady Cavitation
,” Exp. Fluids
, 39
(6), pp. 545
–552
.20.
Sato
, K.
, Hachino
, K.
, and Saito
, Y.
, 2003
, “Inception and Dynamics of Traveling Bubble Type Cavitation in a Venturi
,” ASME
Paper No. FEDSM2003-45322.21.
Barre
, S.
, Rolland
, J.
, Boitel
, G.
, Goncalves
, E.
, and Fortes-Patella
, R.
, 2009
, “Experiments and Modeling of Cavitating Flows in Venturi: Attached Sheet Cavitation
,” Eur. J. Mech. B/Fluids
, 28
(3
), pp. 444
–464
.22.
Goncalves
, E.
, and Fortes-Patella
, R.
, 2009
, “Numerical Simulations of Cavitating Flows With Homogeneous Models
,” Comput. Fluids
, 38
(9), pp. 682
–696
.23.
Wilcox
, D.
, 1998
, Turbulence Modeling for CFD
, DCW Industries
, CA
.24.
Spalart
, P.
, and Allmaras
, R.
, 1994
, “A One-Equation Turbulence Model for Aerodynamic Flows
,” Rech. Aeroespatiale
, 1
, pp. 5
–21
.25.
Coussirat
, M.
, 2003
, “Theoretical/Numerical Study of Flows With Strong Streamlines Curvature
,” Ph.D. thesis, Universitat Politècnica de Catalunya, Barcelona, Spain
.26.
Versteeg
, H.
, and Malalasekera
, W.
, 2007
, An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, Pearson/Prentice Hall
, Upper Saddle River, NJ
.27.
Sagaut
, P.
, 2006
, Large Eddy Simulation for Incompressible Flows: An Introduction
, Springer
, Berlin
.28.
Salvador
, F.
, Martínez-López
, J.
, Romero
, J.
, and Roselló
, M.
, 2013
, “Computational Study of the Cavitation Phenomenon and Its Interaction With the Turbulence Developed in Diesel Injector Nozzles by Large Eddy Simulation (LES)
,” Math. Comput. Model.
, 57
, pp. 1656
–1662
.29.
Chunekar
, A.
, 2009
, “Numerical Modeling and Simulation of Turbulence–Cavitation Interactions in a Venturi Geometry
,” M.Sc. thesis
, Purdue University, West Lafayette, IN
.30.
Rodio
, M.
, and Abgrall
, R.
, 2015
, “An Innovative Phase Transition Modeling for Reproducing Cavitation Through a Five-Equation Model and Theoretical Generalization to Six and Seven-Equation Models
,” Int. J. Heat Mass Transfer
, 89
, pp. 1386
–1401
.31.
Kunz
, R.
, Boger
, D.
, Chyczewski
, T.
, Stinebring
, D.
, Gibeling
, H.
, and Govindan
, T.
, 1999
, “Multi-Phase CFD Analysis of Natural and Ventilated Cavitation About Submerged Bodies
,”3rd ASME/JSME
Joint Fluids Engineering Conference
, San Francisco, CA, July 18–23, pp. 18
–23
.32.
He
, Z.
, Tao
, X.
, Zhong
, W.
, Leng
, X.
, Wang
, Q.
, and Zhao
, P.
, 2015
, “Experimental and Numerical Study of Cavitation Inception Phenomenon in Diesel Injector Nozzles
,” Int. Commun. Heat Mass Transfer
, 65
, pp. 117
–124
.33.
Margot
, X.
, Hoyas
, S.
, Gil
, A.
, and Patouna
, S.
, 2012
, “Numerical Modeling of Cavitation: Validation and Parametric Studies
,” Eng. Appl. Comput. Fluid Mech.
, 6
(1
), pp. 15
–24
.34.
Coutier-Delgosha
, O.
, Fortes-Patella
, R.
, and Reboud
, J.
, 2003
, “Evaluation of the Turbulence Model Influence on the Numerical Simulation of Unsteady Cavitation
,” ASME J. Fluids Eng.
, 25
(1), pp. 38
–45
.35.
Coutier-Delgosha
, O.
, Reboud
, J.
, and Delannoy
, Y.
, 2003
, “Numerical Simulation of the Unsteady Behavior of Cavitating Flows
,” Int. J. Numer. Methods Fluids
, 42
, pp. 527
–548
.36.
Hassanzadeh
, A.
, Bakhsha
, M.
, and Dadvand
, A.
, 2014
, “Numerical Study of the Effect of Wall Injection on the Cavitation Phenomenon in Diesel Injector
,” Eng. Appl. Comput. Fluid Mech.
, 8
(4
), pp. 562
–573
.37.
Darbandi
, M.
, and Sadeghi
, H.
, 2010
, “Numerical Simulation of Orifice Cavitating Flows Using Two-Fluid and Three-Fluid Cavitation Models
,” Numer. Heat Transfer, Pt. A
, 58
(6
), pp. 505
–526
.38.
Palau
, G.
, and Frankel
, S.
, 2004
, “Numerical Modeling of Cavitation Using Fluent: Validation and Parametric Studies
,” AIAA
Paper No. 2004-2642.39.
Palau
, G.
, González
, P.
, and Rabiza
, J.
, 2007
, “Numerical Modeling of Cavitating Flows for Simple Geometries Using Fluent V6.1
,” Span. J. Agric. Res.
, 5
(4
), pp. 460
–469
.40.
Martynov
, S.
, Mason
, D.
, and Heikal
, R.
, 2006
, “Numerical Simulation of Cavitation Flows Based on Their Hydrodynamic Similarity
,” Int. J. Engine Res.
, 7
(3
), pp. 283
–296
.41.
42.
Launder
, B.
, and Spalding
, D.
, 1974
, “The Numerical Computation of Turbulent Flows
,” Comput. Methods Appl. Mech. Eng.
, 3
(2
), pp. 269
–289
.43.
Shih
, T.
, Liou
, W.
, Shabbir
, A.
, Yang
, Z.
, and Zhu
, J.
, 1995
, “A New k-epsilon Eddy Viscosity Model for High Re Turbulent Flow—Model Development and Validation
,” Comput. Fluids
, 24
(3
), pp. 227
–238
.44.
Yakhot
, V.
, and Orszag
, S.
, 1986
, “Renormalization Group Analysis of Turbulence—I: Basic Theory
,” J. Sci. Comput.
, 1
(1
), pp. 3
–51
.45.
Menter
, F.
, 1994
, “Two Equations Eddy-Viscosity Turbulence Models for Engineering Applications
,” AIAA J.
, 32
(8
), pp. 1598
–1605
.46.
Launder
, G.
, Reece
, J.
, and Rodi
, W.
, 1975
, “Progress in the Development of a Reynolds-Stress Turbulence Closure
,” J. Fluid Mech.
, 68
(3
), pp. 537
–566
.47.
Escaler
, X.
, Egusquiza
, E.
, Farhat
, M.
, Avellan
, F.
, and Coussirat
, M.
, 2006
, “Detection of Cavitation in Hydraulic Turbines
,” Mech. Syst. Signal Process.
, 20
(4
), pp. 983
–1007
.48.
Pouffary
, B.
, 2006
, Numerical Modeling of Cavitation
(AVT-143 RTO AVT/VKI Lecture Series), von Karman Institute
, Rhode St. Genèse, Belgium
.49.
Bardow
, A.
, Bischof
, C.
, and Bucker
, H.
, 2008
, “Sensitivity-Based Analysis of the k-ε Model for the Turbulent Flow Between Two Plates
,” Chem. Eng. Sci.
, 63
(19
), pp. 4763
–4775
.50.
Menter
, F.
, Kuntz
, M.
, and Langtry
, R.
, 2003
, “Ten Years of Industrial Experience With the SST Turbulence Model
,” Turbulence, Heat and Mass Transfer
, Vol. 4
, K.
Hanjalic
, Y. Nagano, and M. Tummers, eds., Begell House
, West Redding, CT, pp. 625
–632
.51.
Egorov
, Y.
, Menter
, F.
, Lechner
, R.
, and Cokljat
, D.
, 2010
, “The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions—Part 2: Application to Complex Flows
,” Flow Turbul. Combust.
, 85
(1
), pp. 139
–165
.52.
Menter
, F.
, and Egorov
, Y.
, 2010
, “The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions—Part 1: Theory and Model Description
,” Flow Turbul. Combust.
, 85
(1
), pp. 113
–138
.Copyright © 2016 by ASME
You do not currently have access to this content.