Miniaturized flow systems have been developed for various applications, including integrated chemical analyses and thermal management of microelectronics. Understanding interfacial transport is important in designing and optimizing such flow systems, since surface effects become significant due to the large surface areas and small volumes at these length scales. Recently, various near-wall flow diagnostic techniques have been developed based on evanescent-wave illumination. Since evanescent waves only illuminate the fluid in the region over the first few hundred nanometers next to the wall, these techniques have much better spatial resolution than conventional methods based on epifluorescence microscopy. This paper presents recent advances in evanescent wave-based flow diagnostics using fluorescent tracers, including evanescent-wave particle velocimetry applied to flows driven by both pressure and voltage gradients and evanescent-wave fluorescence, which has been used to measure near-wall liquid temperature and pH fields, as well as the surface charge, or wall ζ-potential, distributions.

References

1.
Vasiliev
,
L. L.
,
2005
, “
Heat Pipes in Modern Heat Exchangers
,”
Appl. Therm. Eng.
,
25
, pp.
1
19
.10.1016/j.applthermaleng.2003.12.004
2.
Ding
,
C.
,
Soni
,
G.
,
Bozorgi
,
P.
,
Piorek
,
B. D.
,
Meinhart
,
C. D.
, and
MacDonald
,
N. C.
,
2010
, “
A Flat Heat Pipe Architecture Based on Nanostructured Titania
,”
J. Microelectromech. Syst.
,
19
, pp.
878
884
.10.1109/JMEMS.2010.2051019
3.
Vilkner
,
T.
,
Janasek
,
D.
, and
Manz
,
A.
,
2004
, “
Micro Total Analysis Systems. Recent Developments
,”
Anal. Chem.
,
76
, pp.
3373
3386
.10.1021/ac040063q
4.
Mawatari
,
K.
,
Kazoe
,
Y.
,
Aota
,
A.
,
Tsukahara
,
T.
,
Sato
,
K.
, and
Kitamori
,
T.
,
2011
, “
Microflow Systems for Chemical Synthesis and Analysis: Approaches to Full Integration of Chemical Process
,”
J. Flow Chem.
,
1
, pp.
3
12
.10.1556/jfchem.2011.00003
5.
Stone
,
H. A.
,
Stroock
,
A. D.
, and
Ajdari
,
A.
,
2004
, “
Engineering Flows in Small Devices
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
381
411
.10.1146/annurev.fluid.36.050802.122124
6.
Czarske
,
J. W.
,
2006
, “
Laser Doppler Velocimetry Using Powerful Solid-State Light Sources
,”
Meas. Sci. Technol.
,
17
, pp.
R71
R91
.10.1088/0957-0233/17/7/R01
7.
Adrian
,
R. J.
,
1991
, “
Particle-Imaging Techniques for Experimental Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
23
, pp.
261
304
.10.1146/annurev.fl.23.010191.001401
8.
Sakakibara
,
J.
, and
Adrian
,
R. J.
,
1999
, “
Whole Field Measurement of Temperature in Water Using Two-Color Laser Induced Fluorescence
,”
Exp. Fluids
,
26
, pp.
7
15
.10.1007/s003480050260
9.
Sinton
,
D.
,
2004
, “
Microscale Flow Visualization
,”
Microfluid. Nanofluid.
,
1
, pp.
2
21
.10.1007/s10404-004-0009-4
10.
Santiago
,
J. G.
,
Wereley
,
S. T.
,
Meinhart
,
C. D.
,
Beebe
,
D. J.
, and
Adrian
,
R. J.
,
1998
, “
A Particle Image Velocimetry System for Microfluidics
,”
Exp. Fluids
,
25
, pp.
316
319
.10.1007/s003480050235
11.
Lindken
,
R.
,
Rossi
,
M.
,
Groβe
,
S.
, and
Westerweel
,
J.
,
2009
, “
Micro-Particle Image Velocimetry (μPIV): Recent Developments, Applications, and Guidelines
,”
Lab Chip
,
9
, pp.
2551
2567
.10.1039/b906558j
12.
Wereley
,
S. T.
, and
Meinhart
,
C. D.
,
2010
, “
Recent Advances in Micro-Particle Image Velocimetry
,”
Annu. Rev. Fluid Mech.
,
42
, pp.
557
576
.10.1146/annurev-fluid-121108-145427
13.
Ross
,
D.
,
Gaitan
,
M.
, and
Locascio
,
L. E.
,
2001
, “
Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye
,”
Anal. Chem.
,
73
, pp.
4117
4123
.10.1021/ac010370l
14.
Sato
,
Y.
,
Irisawa
,
G.
,
Ishizuka
,
M.
,
Hishida
,
K.
, and
Maeda
,
M.
,
2003
, “
Visualization of Convective Mixing in Microchannel by Fluorescence Imaging
,”
Meas. Sci. Technol.
,
14
, pp.
114
121
.10.1088/0957-0233/14/1/317
15.
Shinohara
,
K.
,
Sugii
,
Y.
,
Okamoto
,
K.
,
Madarame
,
H.
,
Hibara
,
A.
,
Tokeshi
,
M.
, and
Kitamori
,
T.
,
2004
, “
Measurement of pH Field of Chemically Reacting Flow in Microfluidic Devices by Laser-Induced Fluorescence
,”
Meas. Sci. Technol.
,
15
, pp.
955
960
.10.1088/0957-0233/15/5/025
16.
Born
,
M.
, and
Wolf
,
E.
,
1999
,
Principles of Optics: Electromagnetic Theory of Propagation, Interface and Diffraction of Light
, 7th ed.,
Cambridge University Press
,
New York
.
17.
Yoda
,
M.
, and
Kazoe
,
Y.
,
2011
, “
Dynamics of Suspended Colloidal Particles Near a Wall: Implications for Interfacial Particle Velocimetry
,”
Phys. Fluids
,
23
, p.
111301
.10.1063/1.3662005
18.
Axelrod
,
D.
,
Burghardt
,
T. P.
, and
Thompson
,
N. L.
,
1984
, “
Total Internal Reflection Fluorescence
,”
Ann. Rev. Biophys. Bioeng.
,
13
, pp.
247
268
.10.1146/annurev.bb.13.060184.001335
19.
Axelrod
,
D.
,
2001
, “
Total Internal Reflection Fluorescence Microscopy in Cell Biology
,”
Traffic
,
2
, pp.
764
774
.10.1034/j.1600-0854.2001.21104.x
20.
Prieve
,
D. C.
,
1999
, “
Measurement of Colloidal Forces With TIRM
,”
Adv. Colloid Interface Sci.
,
82
, pp.
93
125
.10.1016/S0001-8686(99)00012-3
21.
de Fornel
,
F.
,
2001
,
Evanescent Waves: From Newtonian Optics to Atomic Optics
,
Springer
,
Berlin
.
22.
Conibear
,
P. B.
, and
Bagshaw
,
C. R.
,
2000
, “
A Comparison of Optical Geometries for Combined Flash Photolysis and Total Internal Reflection Fluorescence Microscopy
,’’
J. Microsc.
,
200
, pp.
218
229
.10.1046/j.1365-2818.2000.00774.x
23.
Prieve
,
D. C.
, and
Frej
,
N. A.
,
1990
, “
Total Internal Reflection Microscopy: A Quantitative Tool for the Measurement of Colloidal Forces
,”
Langmuir
,
6
, pp.
396
403
.10.1021/la00092a019
24.
Helden
,
L.
,
Eremina
,
E.
,
Riefler
,
N.
,
Hertlein
,
C.
,
Bechinger
,
C.
,
Eremin
,
Y.
, and
Wriedt
,
T.
,
2006
, “
Single-Particle Evanescent Light Scattering Simulations for Total Internal Reflection Microscopy
,”
Appl. Opt.
,
45
, pp.
7299
7308
.10.1364/AO.45.007299
25.
Hertlein
,
C.
,
Riefler
,
N.
,
Eremina
,
E.
,
Wriedt
,
T.
,
Eremin
,
Y.
,
Helden
,
L.
, and
Bechinger
,
C.
,
2008
, “
Experimental Verification of an Exact Evanescent Light Scattering Model for TIRM
,”
Langmuir
,
24
, pp.
1
4
.10.1021/la703322d
26.
Kihm
,
K. D.
,
Banerjee
,
A.
,
Choi
,
C. K.
, and
Takagi
,
T.
,
2004
, “
Near-Wall Hindered Brownian Diffusion of Nanoparticles Examined by Three-Dimensional Ratiometric Total Internal Reflection Fluorescence Microscopy (3-D R-TIRFM)
,”
Exp. Fluids
,
37
, pp.
811
824
.10.1007/s00348-004-0865-4
27.
Li
,
H.
,
Sadr
,
R.
, and
Yoda
,
M.
,
2006
, “
Multilayer Nano-Particle Image Velocimetry
,”
Exp. Fluids
,
41
, pp.
185
194
.10.1007/s00348-006-0155-4
28.
Huang
,
P.
,
Guasto
,
J. S.
, and
Breuer
,
K. S.
,
2006
, “
Direct Measurement of Slip Velocities Using Three-Dimensional Total Internal Reflection Velocimetry
,”
J. Fluid Mech.
,
566
, pp.
447
464
.10.1017/S0022112006002229
29.
Huang
,
P.
, and
Breuer
,
K. S.
,
2007
, “
Direct Measurement of Anisotropic Near-Wall Hindered Diffusion Using Total Internal Reflection Velocimetry
,”
Phys. Rev. E
,
76
, p.
046307
.10.1103/PhysRevE.76.046307
30.
Li
,
H.
, and
Yoda
,
M.
,
2008
, “
Multilayer Nano-Particle Image Velocimetry (MnPIV) in Microscale Poiseuille Flows
,”
Meas. Sci. Technol.
,
19
, p.
075402
.10.1088/0957-0233/19/7/075402
31.
Faxén
,
H.
,
1922
, “
Der Widerstand Gegen die Bewegung einer Starren Kugel in einer Zähen Flüssigkeit, die Zwischen Zwei Parallelen Ebenen Wänden Eingeschlossen ist
,”
Ann. Phys.
,
373
, pp.
89
119
.10.1002/andp.19223731003
32.
Goldman
,
A. J.
,
Cox
,
R. G.
, and
Brenner
,
H.
,
1967
, “
Slow Viscous Motion of a Sphere Parallel to a Plane Wall-I Motion Through a Quiescent Fluid
,”
Chem. Eng. Sci.
,
22
, pp.
637
651
.10.1016/0009-2509(67)80047-2
33.
Brenner
,
H.
,
1961
, “
The Slow Motion of a Sphere Through a Viscous Fluid Towards a Plane Surface
,”
Chem. Eng. Sci.
,
16
, pp.
242
251
.10.1016/0009-2509(61)80035-3
34.
Bevan
,
M. A.
, and
Prieve
,
D. C.
,
2000
, “
Hindered Diffusion of Colloidal Particles Very Near to a Wall: Revisited
,”
J. Chem. Phys.
,
113
(
3
), pp.
1228
1236
.10.1063/1.481900
35.
Sadr
,
R.
,
Hohenegger
,
C.
,
Li
,
H.
,
Mucha
,
P. J.
, and
Yoda
,
M.
,
2007
, “
Diffusion-Induced Bias in Near-Wall Velocimetry
,”
J. Fluid. Mech.
,
577
, pp.
443
456
.10.1017/S0022112007005150
36.
Huang
,
P.
,
Guasto
,
J. S.
, and
Breuer
,
K. S.
,
2009
, “
The Effects of Hindered Mobility and Depletion of Particles in Near-Wall Shear Flows and the Implications for Nanovelocimetry
,”
J. Fluid. Mech.
,
637
, pp.
241
265
.10.1017/S0022112009990656
37.
Bevan
,
M. A.
, and
Prieve
,
D. C.
,
1999
, “
Direct Measurement of Retarded van der Waals Attraction
,”
Langmuir
,
15
, pp.
7925
7936
.10.1021/la981381l
38.
Yamada
,
J.
,
1999
, “
Evanescent Wave Doppler Velocimetry for a Wall's Near Field
,”
Appl. Phys. Lett.
,
75
, pp.
1805
1806
.10.1063/1.124826
39.
Zettner
,
C. M.
, and
Yoda
,
M.
,
2003
, “
Particle Velocity Field Measurements in a Near-Wall Flow Using Evanescent Wave Illumination
,”
Exp. Fluids
,
34
, pp.
115
121
.10.1007/s00348-002-0541-5
40.
Jin
,
S.
,
Huang
,
P.
,
Park
,
J.
,
Yoo
,
J. Y.
, and
Breuer
,
K. S.
,
2004
, “
Near-Surface Velocimetry Using Evanescent Wave Illumination
,”
Exp. Fluids
,
37
, pp.
825
833
.10.1007/s00348-004-0870-7
41.
Pouya
,
S.
,
Koochesfahani
,
M.
,
Snee
,
P.
,
Bawendi
,
M.
, and
Nocera
,
D.
,
2005
, “
Single Quantum Dot (QD) Imaging of Fluid Flow Near Surfaces
,”
Exp. Fluids
,
39
, pp.
784
786
.10.1007/s00348-005-0004-x
42.
Guasto
,
J. S.
,
Huang
,
P.
, and
Breuer
,
K. S.
,
2006
, “
Statistical Particle Tracking Velocimetry Using Molecular and Quantum Dot Tracer Particles
,”
Exp. Fluids
,
41
, pp.
869
880
.10.1007/s00348-006-0202-1
43.
Bocquet
,
L.
, and
Barrat
,
J.-L.
,
2007
, “
Flow Boundary Conditions From Nano- to Micro-Scales
,”
Soft Matter
,
3
, pp.
685
693
.10.1039/b616490k
44.
Neto
,
C.
,
Evans
,
D. R.
,
Bonaccurso
,
E.
,
Butt
,
H.-J.
, and
Craig
,
V. S. J.
,
2005
, “
Boundary Slip in Newtonian Liquids: A Review of Experimental Studies
,”
Rep. Prog. Phys.
,
68
, pp.
2859
2897
.10.1088/0034-4885/68/12/R05
45.
Huang
,
P.
, and
Breuer
,
K.
,
2007
, “
Direct Measurement of Slip Length in Electrolyte Solutions
,”
Phys. Fluids
,
19
,
p
. 028104.10.1063/1.2539829
46.
Bouziques
,
C. I.
,
Tabeling
,
P.
, and
Bocquet
,
L.
,
2008
, “
Nanofluidics in the Debye Layer at Hydrophilic and Hydrophobic Surfaces
,”
Phys. Rev. Lett.
,
101
, p.
114503
.10.1103/PhysRevLett.101.114503
47.
Li
,
H.
, and
Yoda
,
M.
,
2010
, “
An Experimental Study of Slip Considering the Effects of Non-Uniform Colloidal Tracer Distributions
,”
J. Fluid Mech.
,
662
, pp.
269
287
.10.1017/S0022112010003198
48.
Hunter
,
R. J.
,
1981
,
Zeta Potential in Colloid Science
,
Academic Press
,
London
.
49.
Sadr
,
R.
,
Yoda
,
M.
,
Zheng
,
Z.
, and
Conlisk
,
A. T.
,
2004
, “
An Experimental Study of Electro-Osmotic Flow in Rectangular Microchannels
,”
J. Fluid Mech.
,
506
, pp.
357
367
.10.1017/S0022112004008626
50.
Sadr
,
R.
,
Li
,
H.
, and
Yoda
,
M.
,
2005
, “
Impact of Hindered Brownian Diffusion on the Accuracy of Particle-Image Velocimetry Using Evanescent-Wave Illumination
,”
Exp. Fluids
,
38
, pp.
90
98
.10.1007/s00348-004-0895-y
51.
Sadr
,
R.
,
Yoda
,
M.
,
Gnanaprakasam
,
P.
, and
Conlisk
,
A. T.
,
2006
, “
Velocity Measurements Inside the Diffuse Electric Double Layer in Electro-Osmotic Flow
,”
Appl. Phys. Lett.
,
89
, p.
044103
.10.1063/1.2234836
52.
Datta
,
S.
,
Conlisk
,
A. T.
, and
Yoda
,
M.
,
2009
, “
Effect of Divalent Ions on Electroosmotic Flow in Microchannels
,”
Mech. Res. Commun.
,
36
, pp.
65
74
.10.1016/j.mechrescom.2008.07.006
53.
Kazoe
,
Y.
,
Nakamura
,
T.
, and
Sato
,
Y.
,
2010
, “
Evanescent-Wave/Volume Illuminated Velocity Measurements of Transient Electrokinetically Driven Flow With Nonuniform Wall Electrostatic Potential
,”
Meas. Sci. Technol.
,
21
, p.
055401
.10.1088/0957-0233/21/5/055401
54.
Kazoe
,
Y.
, and
Yoda
,
M.
,
2011
, “
Experimental Study of the Effect of External Electric Fields on Interfacial Dynamics of Colloidal Particles
,”
Langmuir
,
27
, pp.
11481
11488
.10.1021/la202056b
55.
Keh
,
H. J.
, and
Anderson
,
J. L.
,
1985
, “
Boundary Effects on Electrophoretic Motion of Colloidal Spheres
,”
J. Fluid Mech.
,
153
, pp.
417
439
.10.1017/S002211208500132X
56.
Kirby
,
B. J.
, and
Hasselbrink
,
E. F., Jr.
,
2004
, “
Zeta Potential of Microfluidic Substrates: 1. Theory, Experimental Techniques, and Effects on Separations
,”
Electrophoresis
,
25
, pp.
187
202
.10.1002/elps.200305754
57.
Kazoe
,
Y.
, and
Yoda
,
M.
,
2011
, “
Measurements of the Near-Wall Hindered Diffusion of Colloidal Particles in the Presence of an Electric Field
,”
Appl. Phys. Lett.
,
99
, p.
124104
.10.1063/1.3643136
58.
Yariv
,
E.
,
2006
, “
‘Force-Free’ Electrophoresis?
,”
Phys. Fluids
,
18
, p.
031702
.10.1063/1.2185690
59.
Walker
,
D. A.
,
1987
, “
A Fluorescence Technique for Measurement of Concentration in Mixing Liquids
,”
J. Phys. E
,
20
, pp.
217
224
.10.1088/0022-3735/20/2/019
60.
Coppeta
,
J.
, and
Rogers
,
C.
,
1998
, “
Dual Emission Laser Induced Fluorescence for Direct Planar Scalar Behavior Measurements
,”
Exp. Fluids
,
25
, pp.
1
15
.10.1007/s003480050202
61.
Guasto
,
J. S.
, and
Breuer
,
K. S.
,
2008
, “
Simultaneous, Ensemble-Averaged Measurement of Near-Wall Temperature and Velocity in Steady Micro-Flows Using Single Quantum Dot Tracking
,”
Exp. Fluids
,
45
, pp.
157
166
.10.1007/s00348-008-0471-y
62.
Kim
,
M.
, and
Yoda
,
M.
,
2012
, “
Extending Fluorescence Thermometry to Measuring Wall Surface Temperatures Using Evanescent-Wave Illumination
,”
ASME J. Heat Transfer
,
134
(1
), p.
011601
.10.1115/1.4004871
63.
Kazoe
,
Y.
, and
Sato
,
Y.
,
2007
, “
Measurement of Zeta-Potential at Microchannel Wall by a Nanoscale Laser Induced Fluorescence Imaging
,”
J. Fluid Sci. Technol.
,
2
, pp.
429
440
.10.1299/jfst.2.429
64.
Kazoe
,
Y.
, and
Sato
,
Y.
,
2007
, “
Effect of Ion Motion on Zeta-Potential Distribution at Microchannel Wall Obtained From Nanoscale Laser-Induced Fluorescence
,”
Anal. Chem.
,
79
, pp.
6727
6733
.10.1021/ac070547x
65.
Kazoe
,
Y.
,
Miyakawa
,
S.
,
Miki
,
N.
, and
Sato
,
Y.
,
2009
, “
Fluorescence Imaging Technique of Surface Electrostatic Potential Using Evanescent Wave Illumination
,”
Appl. Phys. Lett.
,
95
, p.
234104
.10.1063/1.3266842
66.
Kuriyama
,
R.
,
Tanaka
,
Y.
,
Akiyama
,
S.
, and
Sato
,
Y.
,
2011
, “
Effect of Electric Double Layer on Near-Wall pH in Microfluidic Device Measured by Nano-LIF
,”
Proc. MicroTAS2011
, pp.
215
217
.
67.
Mahajan
,
R.
,
Chiu
,
C.-P.
, and
Chrysler
,
G.
,
2006
, “
Cooling a Microprocessor Chip
,”
Proc. IEEE
,
94
, pp.
1476
1486
.10.1109/JPROC.2006.879800
68.
Shafii
,
M. B.
,
Lum
,
C. L.
, and
Koochesfahani
,
M. M.
,
2009
, “
In-Situ LIF Temperature Measurements in Aqueous Ammonium Chloride Solution During Uni-Directional Solidification
,”
Exp. Fluids
,
48
, pp.
651
662
.10.1007/s00348-009-0758-7
69.
Kim
,
M.
, and
Yoda
,
M.
,
2010
, “
Dual-Tracer Fluorescence Thermometry Measurements in a Heated Channel
,”
Exp. Fluids
,
49
, pp.
257
266
.10.1007/s00348-010-0853-9
70.
Herr
,
A. E.
,
Molho
,
J. I.
,
Santiago
,
J. G.
,
Mungal
,
M. G.
,
Kenny
,
T. W.
, and
Garguilo
,
M. G.
,
2000
, “
Electroosmotic Capillary Flow With Nonuniform Zeta Potential
,”
Anal. Chem.
,
72
, pp.
1053
1057
.10.1021/ac990489i
71.
Stroock
,
A. D.
,
Weck
,
M.
,
Chiu
,
D. T.
,
Huck
,
W. T. S.
, and
Kenis
,
P. J. A.
,
2000
, “
Patterning Electro-Osmotic Flow With Patterned Surface Charge
,”
Phys. Rev. Lett.
,
84
(
15
), pp.
3314
3317
.10.1103/PhysRevLett.84.3314
72.
Schasfoort
,
R. B. M.
,
Schlautmann
,
S.
,
Hendrikse
,
J.
, and
van den Berg
,
A.
,
1999
, “
Field-Effect Flow Control for Microfabricated Fluidic Networks
,”
Science
,
286
, pp.
942
945
.10.1126/science.286.5441.942
73.
Wu
,
H. Y.
, and
Liu
,
C. H.
,
2005
, “
A Novel Electrokinetic Micromixer
,”
Sens. Actuators A
,
118
, pp.
107
115
.10.1016/j.sna.2004.06.032
74.
Scales
,
P. J.
,
Grieser
,
F.
,
Healy
,
T. W.
,
White
,
L. R.
, and
Chan
,
D. Y. C.
,
1992
, “
Electrokinetics of the Silica-Solution Interface: A Flat Plate Streaming Potential Study
,”
Langmuir
,
8
, pp.
965
974
.10.1021/la00039a037
75.
Sze
,
A.
,
Erickson
,
D.
,
Ren
,
L.
, and
Li
,
D.
,
2003
, “
Zeta-Potential Measurement Using the Smoluchowski Equation and the Slope of the Current-Time Relationship in Electroosmotic Flow
,”
J. Colloid Interface Sci.
,
261
, pp.
402
410
.10.1016/S0021-9797(03)00142-5
76.
Ichiyanagi
,
M.
,
Sato
,
Y.
, and
Hishida
,
K.
,
2005
, “
Evaluation of Electroosmotic Velocity and Zeta-Potential in Microchannel Using Submicron Fluorescent Particles
,”
Trans. Jpn. Soc. Mech. Eng.
,
71
, pp.
2316
-
2323
.10.1299/kikaib.71.2316
77.
Bottenus
,
D.
,
Oh
,
Y.-J.
,
Han
,
S. M.
, and
Ivory
,
C. F.
,
2009
, “
Experimentally and Theoretically Observed Native pH Shifts in a Nanochannel Array
,”
Lab Chip
,
9
, pp.
219
231
.10.1039/b803278e
78.
Kazoe
,
Y.
,
Mawatari
,
K.
,
Sugii
,
Y.
, and
Kitamori
,
T.
,
2011
, “
Development of a Measurement Technique for Ion Distribution in an Extended Nanochannel by Super-Resolution-Laser-Induced Fluorescence
,”
Anal. Chem.
,
83
, pp.
8152
8157
.10.1021/ac201654r
You do not currently have access to this content.