In this paper, we have studied the electrokinetics and mixing driven by an imposed pressure gradient and electric field in a charged modulated microchannel. By performing detailed numerical simulations based on the coupled Poisson, Nernst–Planck, and incompressible Navier–Stokes equations, we discussed electrokinetic transport and other hydrodynamic effects under the application of combined pressure and dc electric fields for different values of electric double layer thickness and channel patch potential. A numerical method based on the pressure correction iterative algorithm is adopted to compute the flow field and mole fraction of the ions. Since electroosmotic flow depends on the magnitude and sign of wall potential, a vortex can be generated through adjusting the patch potential. The dependence of the vortical flow on imposed pressure gradient is investigated. Formation of vortex in electroosmotic flow has importance in producing solute dispersion. The circulation of vortex grows with the rise of patch potential, whereas the pressure-assisted electroosmotic flow produces a reduction in vortex size. However, the flow rate is substantially increased in pressure-assisted electroosmotic flow. Flow reversal and suppression of fluid transport is possible through an adverse pressure gradient. The ion distribution and electric field above the potential patch are distorted by the imposed pressure gradient. At higher values of the pressure gradient, the combined pressure electroosmotic-driven flow resembles the fully developed Poiseuille flow. Current density is found to increase with the rise of imposed pressure gradient.

References

1.
Probstein
,
R. F.
,
1994
,
Physicochemical Hydrodynamics: An Introduction
, 2nd ed.,
Wiley Interscience
,
New York
.
2.
Oh
,
J. M.
, and
Kang
,
K. H.
,
2007
, “
Conditions for Similitude and the Effect of Finite Debye Length in Electroosmotic Flows
,”
J. Colloid Interface Sci.
,
310
, pp.
607
616
.10.1016/j.jcis.2007.01.087
3.
Ajdari
,
A.
,
1995
, “
Electro-Osmosis on Inhomogeneously Charged Surfaces
,”
Phys. Rev. Lett.
,
75
(
4
), pp.
755
758
.10.1103/PhysRevLett.75.755
4.
Stroock
,
A. D.
,
Weck
,
M.
,
Chiu
,
D. T.
,
Huck
,
W. T. S.
,
Kenis
,
P. J. A.
,
Ismagilov
,
R. F.
, and
Whitesides
,
G. M.
,
2000
, “
Patterning Electro-Osmotic Flow With Patterned Surface Charge
,”
Phys. Rev. Lett.
,
84
(
15
), pp.
3314
3317
.10.1103/PhysRevLett.84.3314
5.
Moorthy
,
J.
,
Khoury
,
C.
,
Moore
,
J. S.
, and
Beebe
,
D. J.
,
2001
, “
Active Control of Electroosmotic Flow in Microchannel Using Light
,”
Sens. Actuators B
,
75
, pp.
223
229
.10.1016/S0925-4005(01)00557-3
6.
Fushinobu
,
K.
, and
Nakata
,
M.
,
2005
, “
An Experimental and Numerical Study of a Liquid Mixing Device for Microsystems
,”
ASME J. Electron. Packag.
,
127
(2), pp.
141
146
.10.1115/1.1869511
7.
Wu
,
H.-Y.
, and
Liu
,
C.-H.
,
2005
, “
A Novel Electrokinetic Micromixer
,”
Sens. Actuators A
,
118
, pp.
107
115
.10.1016/j.sna.2004.06.032
8.
Herr
,
A. E.
,
Molho
,
J. I.
,
Santiago
,
J. G.
,
Mungal
,
M. G.
, and
Kenny
,
T. W.
,
2000
, “
Electroosmotic Capillary Flow With Nonuniform Zeta Potential
,”
Anal. Chem.
,
72
, pp.
1053
1057
.10.1021/ac990489i
9.
Ren
,
C. L.
, and
Li
,
D.
,
2004
, “
Electroviscous Effects on Pressure-Driven Flow of Dilute Electrolyte Solutions in Small Microchannels
,”
J. Colloid Interface Sci.
,
274
, pp.
319
330
.10.1016/j.jcis.2003.10.036
10.
Ghosal
,
S.
,
2002
, “
Lubrication Theory for Electro-Osmotic Flow in a Microfluidic Channel of Slowly Varying Cross-Section and Wall Charge
,”
J. Fluid Mech.
,
459
, pp.
103
128
.10.1017/S0022112002007899
11.
Erickson
,
D.
, and
Li
,
D.
,
2002
, “
Influence of Surface Heterogeneity on Electrokinetically Driven Microfluidic Mixing
,”
Langmuir
,
18
, pp.
1883
1892
.10.1021/la015646z
12.
Yariv
,
E.
,
2004
, “
Electro-Osmotic Flow Near a Surface Charge Discontinuity
,”
J. Fluid Mech.
,
521
, pp.
181
189
.10.1017/S0022112004001892
13.
Fu
,
L.-M.
,
Lin
,
J.-Y.
, and
Yang
,
R.-J.
,
2003
, “
Analysis of Electroosmotic Flow With Step Change in Zeta Potential
,”
J. Colloid Interface Sci.
,
258
, pp.
266
275
.10.1016/S0021-9797(02)00078-4
14.
Chang
,
C. C.
, and
Yang
,
R. J.
,
2007
, “
Electrokinetic Mixing in Microfluidic Systems
,”
Microfluid. Nanofluid.
,
3
, pp.
501
525
.10.1007/s10404-007-0178-z
15.
Horiuchi
,
K.
,
Dutta
,
P.
, and
Ivory
,
C. F.
,
2007
, “
Electroosmosis With Step Changes in Zeta Potential in Microchannels
,”
AIChE J.
,
53
, pp.
2521
2533
.10.1002/aic.11275
16.
Bhattacharyya
,
S.
, and
Nayak
,
A. K.
,
2009
, “
Electroosmotic Flow in Micro/Nanochannels With Surface Potential Heterogeneity: An Analysis Through the Nernst-Planck Model With Convection Effect
,”
Colloids Surf. A
,
339
, pp.
167
177
.10.1016/j.colsurfa.2009.02.017
17.
Chen
,
L.
, and
Conlisk
,
A. T.
,
2009
, “
Effect of Nonuniform Surface Potential on Electroosmotic Flow at Large Applied Electric Field Strength
,”
Biomed. Microdevices
,
11
, pp.
251
258
.10.1007/s10544-008-9231-2
18.
Zhang
,
Y.
,
Gu
,
X.-J.
,
Barber
,
R. W.
, and
Emerson
,
D. R.
,
2004
, “
An Analysis of Induced Pressure Fields in Electroosmotic Flows Through Microchannels
,”
J. Colloid Interface Sci.
,
275
, pp.
670
678
.10.1016/j.jcis.2004.02.052
19.
Lettieri
,
G.-L.
,
Dodge
,
A.
,
Boer
,
G.
,
de Rooij
,
N. F.
, and
Verpoort
,
E.
,
2003
, “
A Novel Microfluidic Concept for Bioanalysis Using Freely Moving Beads Trapped in Recirculating Flows
,”
Lab Chip
,
3
, pp.
34
39
.10.1039/b211869f
20.
Wei
,
H.-H.
,
2005
, “
Shear-Modulated Electroosmotic Flow on a Patterned Charged Surface
,”
J. Colloid Interface Sci.
,
284
, pp.
742
752
.10.1016/j.jcis.2004.10.015
21.
Santiago
,
J. G.
,
2001
, “
Electroosmotic Flows in Microchannels With Finite Inertial and Pressure Forces
,”
Anal. Chem.
,
73
, pp.
2353
2365
.10.1021/ac0101398
22.
Dutta
,
P.
, and
Beskok
,
A.
,
2001
, “
Analytical Solution of Combined Electroosmotic/Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye Layer Effects
,”
Anal. Chem.
,
73
, pp.
1979
1986
.10.1021/ac001182i
23.
Hu
,
J. S.
, and
Chao
,
C. Y. H.
,
2007
, “
A Study of the Performance of Microfabricated Electroosmotic Pump
,”
Sens. Actuators A
,
135
, pp.
273
282
.10.1016/j.sna.2006.07.007
24.
Min
,
J. Y.
,
Kim
,
D.
, and
Kim
,
S. J.
,
2006
, “
A Novel Approach to Analysis of Electroosmotic Pumping Through Rectangular-Shaped Microchannels
,”
Sens. Actuators B
,
120
, pp.
305
312
.10.1016/j.snb.2006.02.028
25.
Nosrati
,
R.
,
Hadigol
,
M.
, and
Raisee
,
M.
,
2010
, “
The Effect of Y-Component Electroosmotic Body Force in Mixed Electroosmotic/Pressure Driven Microflows
,”
Colloids Surf. A
,
372
, pp.
190
195
.10.1016/j.colsurfa.2010.10.006
26.
Sun
,
Z.-Y.
,
Gao
,
Y.-T.
,
Yu
,
X.
, and
Liu
,
Y.
,
2010
, “
Formation of Vortices in a Combined Pressure-Driven Electro-Osmotic Flow Through the Insulated Sharp Tips Under Finite Debye Length Effects
,”
Colloids Surf. A
,
366
, pp.
1
11
.10.1016/j.colsurfa.2010.04.038
27.
Hadigol
,
M.
,
Nosrati
,
R.
, and
Raisee
,
M.
,
2011
, “
Numerical Analysis of Mixed Electroosmotic/Pressure Driven Flow of Power-Law Fluids in Microchannels and Micropumps
,”
Colloids Surf. A
,
374
, pp.
142
153
.10.1016/j.colsurfa.2010.10.045
28.
Hadigol
,
M.
,
Nosrati
,
R.
,
Nourbakhsh
,
A.
, and
Raisee
,
M.
,
2011
, “
Numerical Study of Electroosmotic Micromixing of Non-Newtonian Fluids
,”
J. Non-Newtonian Fluid Mech.
,
166
, pp.
965
971
.10.1016/j.jnnfm.2011.05.001
29.
Tian
,
F.
,
Li
,
B.
, and
Kwok
,
D. Y.
,
2005
, “
Tradeoff Between Mixing and Transport for Electroosmotic Flow in Heterogeneous Microchannels With Nonuniform Surface Potentials
,”
Langmuir
,
21
, pp.
1126
1131
.10.1021/la048203e
30.
Sverjensky
,
D. A.
,
2005
, “
Prediction of Surface Charge on Oxides in Salt Solutions: Revisions for 1:1 (M+L−) Electrolytes
,”
Geochim. Cosmochim. Acta
,
69
, pp.
225
257
.10.1016/j.gca.2004.05.040
31.
Choi
,
Y. S.
, and
Kim
,
S. J.
,
2009
, “
Electrokinetic Flow-Induced Currents in Silica Nanofluidic Channels
,”
J. Colloid Interface Sci.
,
333
, pp.
672
678
.10.1016/j.jcis.2009.01.061
32.
Fletcher
,
C. A. J.
,
1991
,
Computational Techniques for Fluid Dynamics
(Springer Series in Computational Physics), Vol.
1
, 2nd ed.,
Springer, Berlin
.
33.
Fletcher
,
C. A. J.
,
1991
,
Computational Techniques for Dynamics
(Springer Series in Computational Physics), Vol.
2
, 2nd ed., Springer, Berlin.
34.
Wang
,
J.
,
Wang
,
M.
, and
Li
,
Z.
,
2006
, “
Lattice Poisson-Boltzmann Simulations of Electro-Osmotic Flows in Microchannels
,”
J. Colloid Interface Sci.
,
296
, pp.
729
736
.10.1016/j.jcis.2005.09.042
You do not currently have access to this content.