In this work, an experimental microfluidic fuel cell is presented with a novel up-scaled porous electrode architecture that provides higher available surface area compared to conventional microfluidic fuel cells, providing the potential for higher overall power outputs. Our proof-of-concept architecture is an up-scaled flow-through fuel cell with more than nine times the active electrode surface area of the flow-through architecture first proposed by Kjeang et al. (2008, “A Microfluidic Fuel Cell With Flow-Through Porous Electrodes,” J. Am. Chem. Soc., 130, pp. 4000–4006). Formic acid and potassium permanganate were employed as the fuel and oxidant, respectively, both dissolved in a sulfuric acid electrolyte. Platinum black was employed as the catalyst for both anode and cathode, and the performances of carbon-based porous electrodes including cloth, fiber, and foam were compared to that of traditional Toray carbon paper (TGP-H-120). The effects of catalyst loading were investigated in a microfluidic fuel cell containing 80 pores per linear inch carbon foam electrodes. A discussion is also provided of current density normalization techniques via projected electrode surface area and electrode volume, the latter of which is a highly informative means for comparing flow-through architectures.

References

1.
Kjeang
,
E.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2009
, “
Microfluidic Fuel Cells: A Review
,”
J. Power Sources
,
186
, pp.
353
369
.10.1016/j.jpowsour.2008.10.011
2.
Ferrigno
,
R.
,
Stroock
,
A.
,
Clark
,
T.
,
Mayer
,
M.
, and
Whitesides
,
G.
,
2003
, “
Membraneless Vanadium Redox Fuel Cell Using Laminar Flow
[J. Am. Chem. Soc. 2002, 124, 12930–12931],”
J. Am. Chem. Soc.
,
125
, p.
2014
.10.1021/ja025124l
3.
Choban
,
E. R.
,
Markoski
,
L. J.
,
Stoltzfus
,
J.
,
Moore
,
J. S.
, and
Kenis
,
P. J. A.
,
2002
, “
Microfluidic Fuel Cells That Lack a Polymer Electrolyte Membrane
,”
Power Sources Proc.
,
40
, pp.
317
320
.
4.
Mousavi Shaegh
,
S. A.
,
Nguyen
,
N.
, and
Chan
,
S. H.
,
2011
, “
A Review on Membraneless Laminar Flow-Based Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
, pp.
5675
5694
.10.1016/j.ijhydene.2011.01.063
5.
Phirani
,
J.
, and
Basu
,
S.
,
2008
, “
Analyses of Fuel Utilization in Microfluidic Fuel Cell
,”
J. Power Sources
,
175
, pp.
261
265
.10.1016/j.jpowsour.2007.08.099
6.
Sprague
,
I. B.
,
Byun
,
D.
, and
Dutta
,
P.
,
2010
, “
Effects of Reactant Crossover and Electrode Dimensions on the Performance of a Microfluidic Based Laminar Flow Fuel Cell
,”
Electrochim. Acta
,
55
, pp.
8579
8589
.10.1016/j.electacta.2010.07.035
7.
Kjeang
,
E.
,
Proctor
,
B. T.
,
Brolo
,
A. G.
,
Harrington
,
D. A.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2007
, “
High-Performance Microfluidic Vanadium Redox Fuel Cell
,”
Electrochim. Acta
,
52
, pp.
4942
4946
.10.1016/j.electacta.2007.01.062
8.
Bazylak
,
A.
,
Sinton
,
D.
, and
Djilali
,
N.
,
2005
, “
Improved Fuel Utilization in Microfluidic Fuel Cells: A Computational Study
,”
J. Power Sources
,
143
, pp.
57
66
.10.1016/j.jpowsour.2004.11.029
9.
Ebrahimi Khabbazi
,
A.
,
Richards
,
A. J.
, and
Hoorfar
,
M.
,
2010
, “
Numerical Study of the Effect of the Channel and Electrode Geometry on the Performance of Microfluidic Fuel Cells
,”
J. Power Sources
,
195
, pp.
8141
8151
.10.1016/j.jpowsour.2010.06.094
10.
Choban
,
E. R.
,
Markoski
,
L. J.
,
Wieckowski
,
A.
, and
Kenis
,
P. J. A.
,
2004
, “
Microfluidic Fuel Cell Based on Laminar Flow
,”
J. Power Sources
,
128
, pp.
54
60
.10.1016/j.jpowsour.2003.11.052
11.
Choban
,
E. R.
,
Spendelow
,
J. S.
,
Gancs
,
L.
,
Wieckowski
,
A.
, and
Kenis
,
P. J. A.
,
2005
, “
Membraneless Laminar Flow-Based Micro Fuel Cells Operating in Alkaline, Acidic, and Acidic/Alkaline Media
,”
Electrochim. Acta
,
50
, pp.
5390
5398
.10.1016/j.electacta.2005.03.019
12.
Jayashree
,
R. S.
,
Yoon
,
S. K.
,
Brushett
,
F. R.
,
Lopez-Montesinos
,
P. O.
,
Natarajan
,
D.
,
Markoski
,
L. J.
, and
Kenis
,
P. J. A.
,
2010
, “
On the Performance of Membraneless Laminar Flow-Based Fuel Cells
,”
J. Power Sources
,
195
, pp.
3569
3578
.10.1016/j.jpowsour.2009.12.029
13.
Yoon
,
S. K.
,
Fichtl
,
G. W.
, and
Kenis
,
P. J. A.
,
2006
, “
Active Control of the Depletion Boundary Layers in Microfluidic Electrochemical Reactors
,”
Lab Chip
,
6
, pp.
1516
1524
.10.1039/b609289f
14.
Ahmed
,
D. H.
,
Park
,
H. B.
,
Lee
,
K. H.
, and
Sung
,
H. J.
,
2010
, “
The Geometrical Design of Membraneless Micro Fuel Cells: Failure and Success
,”
Int. J. Energy Res.
,
34
, pp.
878
896
.10.1002/er.1615
15.
Sprague
,
I. B.
,
Dutta
,
P.
, and
Ha
,
S.
,
2009
, “
Characterization of a Membraneless Direct-Methanol Micro Fuel Cell
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
223
, pp.
799
808
.10.1243/09576509JPE724
16.
Jayashree
,
R. S.
,
Gancs
,
L.
,
Choban
,
E. R.
,
Primak
,
A.
,
Natarajan
,
D.
,
Markoski
,
L. J.
, and
Kenis
,
P. J. A.
,
2005
, “
Air-Breathing Laminar Flow-Based Microfluidic Fuel Cell
,”
J. Am. Chem. Soc.
,
127
, pp.
16758
-
16759
.10.1021/ja054599k
17.
Kjeang
,
E.
,
Brolo
,
A. G.
,
Harrington
,
D. A.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2007
, “
Hydrogen Peroxide as an Oxidant for Microfluidic Fuel Cells
,”
J. Electrochem. Soc.
,
154
, pp.
B1220
B1226
.10.1149/1.2784185
18.
Shyu
,
J.
, and
Huang
,
C.
,
2011
, “
Characterization of Bubble Formation in Microfluidic Fuel Cells Employing Hydrogen Peroxide
,”
J. Power Sources
,
196
, pp.
3233
3238
.10.1016/j.jpowsour.2010.12.005
19.
Kjeang
,
E.
,
McKechnie
,
J.
,
Sinton
,
D.
, and
Djilali
,
N.
,
2007
, “
Planar and Three-Dimensional Microfluidic Fuel Cell Architectures Based on Graphite Rod Electrode
,”
J. Power Sources
,
168
, pp.
379
390
.10.1016/j.jpowsour.2007.02.087
20.
Salloum
,
K. S.
,
Hayes
,
J. R.
,
Friesen
,
C. A.
, and
Posner
,
J. D.
,
2008
, “
Sequential Flow Membraneless Microfluidic Fuel With Porous Electrodes
,”
J. Power Sources
,
180
, pp.
243
252
.10.1016/j.jpowsour.2007.12.116
21.
Kjeang
,
E.
,
Michel
,
R.
,
Harrington
,
D. A.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2008
, “
A Microfluidic Fuel Cell With Flow-Through Porous Electrodes
,”
J. Am. Chem. Soc.
,
130
, pp.
4000
4006
.10.1021/ja078248c
22.
Salloum
,
K. S.
, and
Posner
,
J. D.
,
2011
, “
A Membraneless Microfluidic Fuel Cell Stack
,”
J. Power Sources
,
196
, pp.
1229
1234
.10.1016/j.jpowsour.2010.08.069
23.
Moore
,
S.
,
Sinton
,
D.
, and
Erickson
,
D.
,
2011
, “
A Plate-Frame Flow-Through Microfluidic Fuel Cell Stack
,”
J. Power Sources
,
196
, pp.
9481
9487
.10.1016/j.jpowsour.2011.07.024
24.
Kjeang
,
E.
,
Michel
,
R.
,
Harrington
,
D. A.
,
Sinton
,
D.
, and
Djilali
,
N.
,
2008
, “
An Alkaline Microfluidic Fuel Cell Based on Formate and Hypochlorite Bleach
,”
Electrochim. Acta
,
54
, pp.
698
705
.10.1016/j.electacta.2008.07.009
25.
Krishnamurthy
,
D.
,
Johansson
,
E. O.
,
Lee
,
J. W.
, and
Kjeang
,
E.
,
2011
, “
Computational Modeling of Microfluidic Fuel Cells With Flow-Through Porous Electrodes
,”
J. Power Sources
,
196
, pp.
10019
10031
.10.1016/j.jpowsour.2011.08.024
26.
Lee
,
J. W.
, and
Kjeang
,
E.
,
2012
, “
Chip-Embedded Thin Film Current Collector for Microfluidic Fuel Cells
,”
Int. J. Hydrogen Energy
,
37
, pp.
9359
9367
.10.1016/j.ijhydene.2012.02.155
27.
Morales-Acosta
,
D.
,
Morales-Acosta
,
M. D.
,
Godinez
,
L. A.
,
Alvarez-Contreras
,
L.
,
Duron-Torres
,
S. M.
,
Ledesma-Garcia
,
J.
, and
Arriaga
,
L. G.
,
2011
, “
PdCo Supported on Multiwalled Carbon Nanotubes as an Anode Catalyst in a Microfluidic Formic Acid Fuel Cell
,”
J. Power Sources
,
196
, pp.
9270
9275
.10.1016/j.jpowsour.2011.07.064
28.
Salloum
,
K. S.
, and
Posner
,
J. D.
,
2010
, “
Counter Flow Membraneless Microfluidic Fuel Cell
,”
J. Power Sources
,
195
, pp.
6941
6944
.10.1016/j.jpowsour.2010.03.096
29.
Brushett
,
F. R.
,
Jayashree
,
R. S.
,
Zhou
,
W.
, and
Kenis
,
P. J. A.
,
2009
, “
Investigation of Fuel and Media Flexible Laminar Flow-Based Fuel Cells
,”
Electrochim. Acta
,
54
, pp.
7099
7105
.10.1016/j.electacta.2009.07.011
30.
Mousavi Shaegh
,
S. A.
,
Nguyen
,
N. -T.
, and
Chan
,
S. H.
,
2010
, “
An Air-Breathing Microfluidic Formic Acid Fuel Cell With a Porous Planar Anode: Experimental and Numerical Investigations
,”
J. Micromech. Microeng.
,
20
, p.
105008
.10.1088/0960-1317/20/10/105008
31.
Mousavi Shaegh
,
S. A.
,
Nguyen
,
N.-T.
,
Chan
,
S. H.
, and
Zhou
,
W.
,
2012
, “
Air-Breathing Membraneless Laminar Flow-Based Fuel Cell With Flow-Through Anode
,”
Int. J. Hydrogen Energy
,
37
, pp.
3466
3476
.10.1016/j.ijhydene.2011.11.051
32.
Mousavi Shaegh
,
S. A.
,
Nguyen
,
N.-T.
, and
Chan
,
S. H.
,
2012
, “
Air-Breathing Microfluidic Fuel Cell With Fuel Reservoir
,”
J. Power Sources
,
209
, pp.
312
317
.10.1016/j.jpowsour.2012.02.115
33.
Lopez-Montesinos
,
P. O.
,
Yossakda
,
N.
,
Schmidt
,
A.
,
Brushett
,
F. R.
,
Pelton
,
W. E.
, and
Kenis
,
P. J. A.
,
2011
, “
Design, Fabrication, and Characterization of a Planar, Silicon-Based, Monolithically Integrated Micro Laminar Flow Fuel Cell With a Bridge-Shaped Microchannel Cross-Section
,”
J. Power Sources
,
196
, pp.
4638
4645
.10.1016/j.jpowsour.2011.01.037
34.
Wilson
,
M. S.
, and
Gottesfeld
,
S.
,
1992
, “
Thin-Film Catalyst Layers for Polymer Electrolyte Fuel Cell Electrodes
,”
J. Appl. Electrochem.
,
22
, pp.
1
7
.10.1007/BF01093004
You do not currently have access to this content.