The study of the entrance region of microchannels and microdevices is limited, yet important, since the effect on the flow field and heat transfer mechanisms is significant. An experimental study has been carried out to explore the laminar hydrodynamic development length in the entrance region of adiabatic square microchannels. Flow field measurements are acquired through the use of microparticle image velocimetry (micro-PIV), a nonintrusive particle tracking and flow observation technique. With the application of micro-PIV, entrance length flow field data are obtained for three different microchannel hydraulic diameters of 500μm, 200μm, and 100μm, all of which have cross-sectional aspect ratios of 1. The working fluid is distilled water, and velocity profile data are acquired over a laminar Reynolds number range from 0.5 to 200. The test-sections were designed as to provide a sharp-edged microchannel inlet from a very large reservoir at least 100 times wider and higher than the microchannel hydraulic diameter. Also, all microchannels have a length-to-diameter ratio of at least 100 to assure fully developed flow at the channel exit. The micro-PIV procedure is validated in the fully developed region with comparison to Navier–Stokes momentum equations. Good agreement was found with comparison to conventional entrance length correlations for ducts or parallel plates, depending on the Reynolds range, and minimal influence of dimensional scaling between the investigated microchannels was observed. New entrance length correlations are proposed, which account for both creeping and high laminar Reynolds number flows. These correlations are unique in predicting the entrance length in microchannels and will aid in the design of future microfluidic devices.

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
EDL-2
(
5
), pp.
126
129
.
2.
Mishan
,
Y.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Hestroni
,
G.
, 2007, “
Effect of Developing Flow and Thermal Regime on Momentum and Heat Transfer in Micro-Scale Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
3100
3114
.
3.
Muwanga
,
R.
,
Hassan
,
I.
, and
MacDonald
,
R.
, 2007, “
Characteristics of Flow Boiling Oscillations in Silicon Microchannel Heat Sinks
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1341
1351
.
4.
Nguyen
,
N. -T.
, and
Wu
,
Z.
, 2005, “
Micromixers—A Review
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
R1
R16
.
5.
deMello
,
A. J.
, 2006, “
Control and Detection of Chemical Reactions in Microfluidic Systems
,”
Nature (London)
0028-0836,
442
, pp.
394
402
.
6.
Chang
,
C. -C.
, and
Yang
,
R. -J.
, 2007, “
Electrokinetic Mixing in Microfluidic Systems
,”
Microfluid. Nanofluid.
1613-4982,
3
, pp.
501
525
.
7.
Epstein
,
A. H.
, 2004, “
Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
205
226
.
8.
Suzuki
,
Y.
,
Okada
,
Y.
,
Ogawa
,
J.
,
Sugiyama
,
S.
, and
Toriyama
,
T.
, 2008, “
Experimental Study on Mechanical Power Generation From MEMS Internal Combustion Engine
,”
Sens. Actuators, A
0924-4247,
141
, pp.
654
661
.
9.
Whitesides
,
G. M.
, 2006, “
The Origins and the Future of Microfluidics
,”
Nature (London)
0028-0836,
442
, pp.
368
373
.
10.
Yager
,
P.
,
Edwards
,
T.
,
Fu
,
E.
,
Helton
,
K.
,
Nelson
,
K.
,
Tam
,
M. R.
, and
Weigl
,
B. H.
, 2006, “
Microfluidic Diagnostic Technologies for Global Public Health
,”
Nature (London)
0028-0836,
442
, pp.
412
418
.
11.
Chaw
,
K. C.
,
Manimaran
,
M.
,
Tay
,
E. H.
, and
Swaminathan
,
S.
, 2007, “
Multi-Step Microfluidic Device for Studying Cancer Metastasis
,”
Lab Chip
1473-0197,
7
, pp.
1041
1047
.
12.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts, Advances in Heat Transfer—Supplement 1
,
Academic
,
New York
.
13.
Han
,
L. S.
, 1960, “
Hydrodynamic Entrance Lengths for Incompressible Laminar Flow in Rectangular Ducts
,”
ASME J. Appl. Mech.
0021-8936,
27
, pp.
403
409
.
14.
Fleming
,
D. P.
, and
Sparrow
,
E. M.
, 1969, “
Flow in the Hydrodynamic Entrance Region of Ducts of Arbitrary Cross Section
,”
ASME J. Heat Transfer
0022-1481,
91
, pp.
345
354
.
15.
Atkinson
,
B.
,
Brocklebank
,
M. P.
,
Card
,
C. C.
, and
Smith
,
J. M.
, 1969, “
Low Reynolds Number Developing Flows
,”
AIChE J.
0001-1541,
15
(
4
), pp.
548
553
.
16.
Wiginton
,
C. L.
, and
Dalton
,
C.
, 1970, “
Incompressible Laminar Flow in the Entrance Region of a Rectangular Duct
,”
ASME J. Appl. Mech.
0021-8936,
37
, pp.
854
856
.
17.
Chen
,
R. -Y.
, 1973, “
Flow in the Entrance Region at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
0098-2202,
95
, pp.
153
158
.
18.
Sparrow
,
E. M.
,
Hixon
,
C. W.
, and
Shavit
,
G.
, 1967, “
Experiments on Laminar Flow Development in Rectangular Ducts
,”
J. Basic Eng.
0021-9223,
89
, pp.
116
124
.
19.
Goldstein
,
R. J.
, and
Kreid
,
D. K.
, 1967, “
Measurement of Laminar Flow Development in a Square Duct Using a Laser-Doppler Flowmeter
,”
ASME J. Appl. Mech.
0021-8936,
34
, pp.
813
818
.
20.
Beavers
,
G. S.
,
Sparrow
,
E. M.
, and
Magnuson
,
R. A.
, 1970, “
Experiments on Hydrodynamically Developing Flow in Rectangular Ducts of Arbitrary Aspect Ratio
,”
Int. J. Heat Mass Transfer
0017-9310,
13
, pp.
689
701
.
21.
Muchnik
,
G. F.
,
Solomonov
,
S. D.
, and
Gordon
,
A. R.
, 1973, “
Hydrodynamic Development of a Laminar Velocity Field in Rectangular Channels
,”
J. Eng. Phys.
0022-0841,
25
(
4
), pp.
1268
1271
.
22.
Santiago
,
J. G.
,
Wereley
,
S. T.
,
Meinhart
,
C. D.
,
Beebe
,
D. J.
, and
Adrian
,
R. J.
, 1998, “
A Particle Image Velocimetry System for Microfluidics
,”
Exp. Fluids
0723-4864,
25
, pp.
316
319
.
23.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Santiago
,
J. G.
, 1999, “
PIV Measurements of a Microchannel Flow
,”
Exp. Fluids
0723-4864,
27
, pp.
414
419
.
24.
Koutsiaris
,
A. G.
,
Mathioulakis
,
D. S.
, and
Tsangaris
,
S.
, 1999, “
Microscope PIV for Velocity-Field Measurement of Particle Suspensions Flowing Inside Glass Capillaries
,”
Meas. Sci. Technol.
0957-0233,
10
, pp.
1037
1046
.
25.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Gray
,
M. H. B.
, 2000, “
Volume Illumination for Two-Dimensional Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
809
814
.
26.
Sharp
,
K. V.
, and
Adrian
,
R. J.
, 2004, “
Transition From Laminar to Turbulent Flow in Liquid Filled Microtubes
,”
Exp. Fluids
0723-4864,
36
, pp.
741
747
.
27.
Hao
,
P. -F.
,
He
,
F.
, and
Zhu
,
K. -Q.
, 2005, “
Flow Characteristics in a Trapezoidal Silicon Microchannel
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
1362
1368
.
28.
Zeighami
,
R.
,
Laser
,
D.
,
Zhou
,
P.
,
Asheghi
,
M.
,
Devasenathipathy
,
S.
,
Kenny
,
T.
,
Santiago
,
J.
, and
Goodson
,
K.
, 2000, “
Experimental Investigation of Flow Transition in Microchannels Using Micro-Resolution Particle Image Velocimetry
,”
Proceedings of the IEEE Seventh Intersociety Conference on Thermomechanical Phenomena in Electronic Systems
,
IEEE
,
Las Vegas, NV
, May 23–26, Vol.
2
, pp.
148
153
.
29.
Lee
,
S. -Y.
,
Wereley
,
S. T.
,
Gui
,
L.
,
Qu
,
W.
, and
Mudawar
,
I.
, 2002, “
Microchannel Flow Measurement Using Micro Particle Image Velocimetry
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE2002)
,
ASME
,
New Orleans, LA
, Nov. 17–22, Vol.
258
, pp.
493
500
.
30.
Lee
,
S. -J.
, and
Kim
,
G. -B.
, 2003, “
Analysis of Flow Resistance Inside Microchannels With Different Inlet Configurations Using Micro-PIV System
,”
ASME
Paper No. ICMM2003-1108.
31.
Oak
,
J.
,
Pence
,
D. V.
, and
Liburdy
,
J. A.
, 2004, “
Flow Development of Co-Flowing Streams in Rectangular Micro-Channels
,”
Microscale Thermophys. Eng.
1089-3954,
8
, pp.
111
128
.
32.
Lee
,
S. -Y.
,
Jang
,
J.
, and
Wereley
,
S. T.
, 2008, “
Effects of Planar Inlet Plenums on the Hydrodynamically Developing Flows in Rectangular Microchannels of Complementary Aspect Ratios
,”
Microfluid. Nanofluid.
1613-4982,
5
, pp.
1
12
.
33.
Olsen
,
M. G.
, and
Adrian
,
R. J.
, 2000, “
Brownian Motion and Correlation in Particle Image Velocimetry
,”
Opt. Laser Technol.
0030-3992,
32
, pp.
621
627
.
34.
Olsen
,
M. G.
, and
Bourdon
,
C. J.
, 2003, “
Out-of-Plane Motion Effects in Microscopic Particle Image Velocimetry
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
895
901
.
35.
Prasad
,
A. K.
,
Adrian
,
R. J.
,
Landreth
,
C. C.
, and
Offutt
,
P. W.
, 1992, “
Effect of Resolution on the Speed and Accuracy of Particle Image Velocimetry Interrogation
,”
Exp. Fluids
0723-4864,
13
, pp.
105
116
.
36.
Vrentas
,
J. S.
,
Duda
,
J. L.
, and
Bargeron
,
K. G.
, 1966, “
Effect of Axial Diffusion of Vorticity on Flow Development in Circular Conduits: Part I. Numerical Solutions
,”
AIChE J.
0001-1541,
12
(
5
), pp.
837
844
.
37.
Bodoia
,
J. R.
, and
Osterle
,
J. F.
, 1961, “
Finite Difference Analysis of Plane Poiseuille and Couette Flow Development
,”
Appl. Sci. Res., Sect. A
0365-7132,
10
, pp.
265
276
.
You do not currently have access to this content.