In order to investigate the erosion extent and mode of cavitation in different states by the commercial code FLUENT and evaluate the reliability of the software, the collapse processes of a vapor bubble, which was near or on the wall under the conditions in the stationary water or the high speed water, were simulated by the numerical calculation by using a 2D model. The results are in accordance with results presented by other researchers, so the simulation may testify to the validation of the code. We suppose that a bevel jet, which is generated contrary to the flow direction when the bubble collapses in high speed flow, may cause the ripple and fish-scale pit damage found on the transition parts of many hydraulic systems.
Issue Section:
Multiphase Flows
1.
Brennen
, C. E.
, 1995, Cavitation and Bubble Dynamics
, Oxford University Press
, New York
.2.
Popinet
, S.
, and Zaleski
, S.
, 2002, “Bubble Collapse Near A Solid Boundary: A Numerical Study of the Influence of Viscosity
,” J. Fluid Mech.
0022-1120, 464
, pp. 137
–163
.3.
Philipp
, Lauterborn
, 1998, “Cavitation Erosion by Single Laser-Produced Bubbles
,” J. Fluid Mech.
0022-1120, 361
, pp. 75
–116
.4.
Hickling
, R.
, and Plesset
, M. S.
, 1964, “Collapse and Rebound of a Spherical Bubble in Water
,” Phys. Fluids
0031-9171, 7
, pp. 7
–14
.5.
Plesset
, M. S.
, and Chapman
, R. B.
, 1971, “Collapse of an Initially Spherical Vapor Cavity in the Neighborhood of a Solid Boundary
,” J. Fluid Mech.
0022-1120, 47
, pp. 283
–290
.6.
Lin
, H.
, Brian
, D. S.
, and Andrew
, J. S.
, 2002, “Rayleigh–Taylor Instability of Violently Collapsing Bubbles
,” Phys. Fluids
1070-6631, 14
, pp. 2925
–2928
.7.
Tomita
, Y.
, and Shima
, A.
, 1990, “High-Speed Photographic Observations of Laser Induced Cavitation Bubbles in Water
,” Acustica
0001-7884, 71
, pp. 161
–171
.8.
Lauterborn
, W.
, 1997, “Cavitation Bubble Dynamics
,” Ultrason. Sonochem.
1350-4177, 4
, pp. 65
–75
.9.
Ohl
, C. D.
, Lindau
, O.
, and Lauterborn
, W.
, 1998, “Details of Asymmetric Bubble Collapse
,” Third International Symposium on Cavitation
, Grenoble, France
, Band 1, pp. 39
–44
.10.
Lu
, F. K.
, and Zhang
, X.
, 1999, “Visualization of a Confined Accelerated Bubble
,” Shock Waves
0938-1287, 9
, pp. 333
–339
.11.
Shima
, A.
, 1997, “Studies on Bubble Dynamics
,” Shock Waves
0938-1287, 7
, pp. 33
–42
.12.
Ishida
, H.
, Nuntadusit
, C.
, and Kimoto
, H.
, 2001, “Cavitation Bubble Behavior Near Solid Boundaries
,” Fourth International Symposium on Cavitation
, Pasadena, CA
.13.
Sunitha
, N.
, Kenneth
, J.
, Lahey
, R. T.
, Jr., and Iskander
, A.
, 2006, “Hydrodynamic Simulation of Air Bubble Implosion Using a Level Set Approach
,” J. Comput. Phys.
0021-9991, 215
, pp. 98
–132
.14.
Strauss
, M.
, Friedman
, M.
, Gurewitz
, E.
, Amendt
, P.
, London
, R. A.
, and Glinsky
, M. E.
, 1999, “Two Dimensional Rayleigh Model of Vapor Bubble Evolution
,” Proc. SPIE
0277-786X, 3601
, pp. 212
–224
.15.
Pearson
, A.
, Blake
, J. R.
, and Otto
, S. R.
, 2004, “Jets in Bubbles
,” J. Eng. Math.
0022-0833, 48
, pp. 391
–412
.16.
Parag
, M. K.
, Parag
, R. G.
, Aniruddha
, B. P.
, and Anne
, M. W.
, 2003, “Cavity Cluster Approach for Quantification of Cavitational Intensity in Sonochemical Reactors
,” Ultrason. Sonochem.
1350-4177, 10
, pp. 181
–189
.17.
Parag
, M. K.
, Parag
, R. G.
, Aniruddha
, B. P.
, and Anne
, M. W.
, 2005, “Dynamics of Cavitational Bubbles and Design of a Hydrodynamic Cavitational Reactors: Cluster Approach
,” Ultrason. Sonochem.
1350-4177, 12
, pp. 441
–452
.18.
Iga
, Y.
, Nonmi
, N.
, Goto
, A.
, Shin
, B. R.
, and Ikohagi
, T.
, 2003, “Numerical Study of Sheet Cavitation Breakoff Phenomenon on a Cascade Hydrofoil
,” J. Fluid Mech.
0022-1120, 125
, pp. 643
–650
.19.
Bourne
, N. K.
, 2005, “On Stress Wave Interactions in Liquid Impact
,” Wear
0043-1648, 258
, pp. 588
–595
.20.
Chen
, X.
, Xu
, R. Q.
, Shen
, Z. H.
, Lu
, J.
, and Ni
, X. W.
, 2004, “Optical Investigation of Cavitation Erosion by Laser-Induced Bubble Collapse
,” Opt. Laser Technol.
0030-3992, 36
, pp. 197
–203
.21.
Kyuichi
, Y.
, 2002, “Segregation of Vapor and Gas in a Sonoluminescing Bubble
,” Ultrasonics
0041-624X, 40
, pp. 643
–647
.22.
Burdin
, F.
, Tsochatzidis
, N. A.
, Guiraud
, P.
, Wilhelm
, A. M.
, and Delmas
, H.
, 1999, “Characterization of the Acoustic Cavitation Cloud by Two Laser Techniques
,” Ultrason. Sonochem.
1350-4177, 6
, pp. 43
–51
.23.
Anderson
, J. D.
, Jr., 1995, Computational Fluid Dynamics: The Basics With Applications
, McGraw-Hill
, New York
.24.
Bowen
, R. M.
, 1976, Theory of Mixtures
, Academic
, New York
.25.
Fluent Inc, 2005, FLUENT 6.2 User’s Guide.
26.
Prevenslik
, T. V.
, 2003, “The Cavitation Induced Becquerel Effect and the Hot Spot Theory of Sonoluminescence
,” Ultrasonics
0041-624X, 41
, pp. 313
–317
.27.
Yasuhiro
, S.
, and Keiichi
, S.
, 2003, “Cavitation Bubble Collapse and Impact in the Wake of a Circular Cylinder
,” Fifth International Symposium on Cavitation
, Osaka, Japan
, Paper No. Cav03-GS-11-004.28.
Wang
, L. Y.
, 1998, “Chat About Fish-Scale Pit
,” China Proceedings Abrasion and Cavitation in Hydraulic Machinery
, pp. 106
–119
, in Chinese.29.
Yao
, Q. P.
, 1999–2000, “Some Pattern and Law of Hydraulic Turbine Abrasion and Cavitation Viewing From Boundary Layer Theory
,” China Proceedings Abrasion and Cavitation in Hydraulic Machinery
, pp. 45
–50
, in Chinese.30.
Wu
, P. H.
, 2002–2003, “Probe Into the Nature and Cause of the Formation of Ripple and Fish-Scale Pit Damages
,” China Proceedings Abrasion and Cavitation in Hydraulic Machinery
, pp. 51
–58
, in Chinese.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.