The aim of this work is to investigate a Galerkin least-squares (GLS) multifield formulation for inelastic non-Newtonian fluid flows. We present the mechanical modeling of isochoric flows combining mass and momentum balance laws in continuum mechanics with an inelastic constitutive equation for the stress tensor. For the latter, we use the generalized Newtonian liquid model, which may predict either shear-thinning or shear-thickening. We employ a finite element formulation stabilized via a GLS scheme in three primal variables: extra stress, velocity, and pressure. This formulation keeps the inertial terms and has the capability of predicting viscosity dependency on the strain rate. The GLS method circumvents the compatibility conditions that arise in mixed formulations between the approximation functions of pressure and velocity and, in the multifield case, of extra stress and velocity. The GLS terms are added elementwise, as functions of the grid Reynolds number, so as to add artificial diffusivity selectively to diffusion and advection dominant flow regions—an important feature in the case of variable viscosity fluids. We present numerical results for the lid-driven cavity flow of shear-thinning and shear-thickening fluids, using the power-law viscosity function for Reynolds numbers between 50 and 500 and power-law exponents from 0.25 to 1.5. We also present results concerning flows of shear-thinning Carreau fluids through abrupt planar and axisymmetric contractions. We study ranges of Carreau numbers from 1 to 100, Reynolds numbers from 1 to 100, and power-law exponents equal to 0.1 and 0.5. Besides accounting for inertia effects in the flow, the GLS method captures some interesting features of shear-thinning flows, such as the reduction of the fluid stresses, the flattening of the velocity profile in the contraction plane, and the separation of the boundary layer downstream the contraction.

1.
Franca
,
L. P.
, and
Stenberg
,
R.
, 1991, “
Error Analysis of Some Galerkin Least Squares Methods for the Elasticity Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
28
(
6
), pp.
1680
1697
.
2.
Owens
,
R. G.
, and
Phillips
,
T. N.
, 2002,
Computational Rheology
,
Imperial College
,
London, UK
.
3.
Marchal
,
J. M.
, and
Crochet
,
M. J.
, 1986, “
Hermitian Finite Elements for Calculating Viscoelastic Flow
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
20
, pp.
187
207
.
4.
Marchal
,
J. M.
, and
Crochet
,
M. J.
, 1987, “
A New Mixed Finite Element for Calculating Viscoelastic Flow
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
26
, pp.
77
114
.
5.
Fortin
,
M.
, and
Pierre
,
R.
, 1989, “
On the Convergence of the Mixed Method of Crochet and Marchal for Viscoelastic Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
73
, pp.
341
350
.
6.
Ruas
,
V.
,
Carneiro de Araujo
,
J. H.
, and
Silva Ramos
,
M. A. M.
, 2004, “
Multi-Field Finite Element Methods With Discontinuous Pressures for Axisymmetric Incompressible Flow
,”
J. Comput. Appl. Math.
0377-0427,
168
, pp.
393
402
.
7.
Behr
,
M.
,
Franca
,
L. P.
, and
Tezduyar
,
T. E.
, 1993, “
Stabilized Finite Element Methods for the Velocity-Pressure-Stress Formulation of Incompressible Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
104
, pp.
31
48
.
8.
Franca
,
L. P.
, and
Frey
,
S.
, 1992, “
Stabilized Finite Element Methods: II. The Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
99
, pp.
209
233
.
9.
Baaijens
,
F. P. T.
, 1998, “
Mixed Finite Element Analysis for Viscoelastic Flow Analysis: A Review
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
79
, pp.
361
385
.
10.
Bonvin
,
J.
,
Picasso
,
M.
, and
Stenberg
,
R.
, 2001, “
GLS and EVSS Methods for a Three-Field Stokes Problem Arising From Viscoelastic Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
3893
3914
.
11.
Crochet
,
M. J.
, and
Keunings
,
R.
, 1982, “
Finite Element Analysis of Die Swell of a Highly Elastic Fluid
.”
J. Non-Newtonian Fluid Mech.
0377-0257,
10
, pp.
339
356
.
12.
Coronado
,
O. M.
,
Arora
,
D.
,
Behr
,
M.
, and
Pasquali
,
M.
, 2006, “
Four-Field Galerkin/Least-Squares Formulation for Viscoelastic Fluids
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
140
, pp.
132
144
.
13.
Guénette
,
R.
, and
Fortin
,
M.
, 1995, “
A New Mixed Finite Element Method for Computing Viscoelastic Flows
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
60
, pp.
27
52
.
14.
Sun
,
J.
,
Smith
,
M. D.
,
Armstrong
,
R. C.
, and
Brown
,
R. A.
, 1999, “
Finite Element Method for Viscoelastic Flows Based on the Discrete Adaptative Viscoelastic Stress Splitting and the Discontinuous Galerkin Method: DAVSS-G/DG
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
86
, pp.
281
307
.
15.
Gatica
,
G. N.
,
González
,
M.
, and
Meddahi
,
S.
, 2004, “
A Low-Order Mixed Finite Element Method for a Class of Quasi-Newtonian Stokes Flows. Part I: A Priori Error Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
881
892
.
16.
Hughes
,
T. J. R.
,
Franca
,
L. P.
, and
Balestra
,
M.
, 1986, “
A New Finite Element Formulation for Computational Fluid Dynamics: V. Circumventing the Babuska-Brezzi Condition: A Stable Petrov-Galerkin Formulation of the Stokes Problem Accomodating Equal-Order Interpolations
.”
Comput. Methods Appl. Mech. Eng.
0045-7825,
59
, pp.
85
99
.
17.
Gurtin
,
M. E.
, 1981,
An Introduction to Continuum Mechanics
,
Academic
,
New York
.
18.
Ferguson
,
J.
, and
Kemblowski
,
Z.
, 1991,
Applied Fluid Rheology
,
Cambridge University Press
,
Cambridge
.
19.
Tanner
,
R. I.
, 1988,
Engineering Rheology
,
Clarendon
,
Oxford, UK
.
20.
Astarita
,
G.
, and
Marrucci
,
G.
, 1974,
Principles of Non-Newtonian Fluid Mechanics
,
McGraw-Hill
,
UK
.
21.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
, 1987,
Dynamics of Polymeric Liquids
,
Wiley
,
New York
.
22.
Carreau
,
P. J.
, 1968, Ph.D. thesis, University of Wisconsin, Madison.
23.
Ciarlet
,
P. G.
, 1978,
The Finite Element Method for Elliptic Problems
,
North-Holland
,
Amsterdam
.
24.
Hughes
,
T. J. R.
, 1987,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
25.
Dahlquist
,
G.
, and
Bjorck
,
A.
, 1969,
Numerical Methods
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
26.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
, 1982, “
Hi-Re Solution for Incompressible Flow Using the Navier-Stokes Equations and the Multigrid Method
.”
J. Comput. Phys.
0021-9991,
48
, pp.
387
411
.
27.
Schreiber
,
R.
, and
Keller
,
H. B.
, 1983, “
Driven Cavity Flows by Efficient Numerical Techniques
,”
J. Comput. Phys.
0021-9991,
49
, pp.
310
333
.
28.
Ku
,
H. C.
, and
Hatziavramidis
,
D.
, 1985, “
Solutions of the Two Dimensional Navier-Stokes Equations by Chebyshev Expansion Methods
,”
Comput. Fluids
0045-7930,
13
, pp.
99
113
.
29.
Sivaloganathan
,
S.
, and
Shaw
,
G. J.
, 1988, “
A Multigrid Method for Recirculating Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
8
, pp.
417
440
.
30.
Jurjevic
,
R.
, 1999, “
Modelling of Two-Dimensional Laminar Flow Using Finite Element Method
,”
Int. J. Numer. Methods Fluids
0271-2091,
31
, pp.
601
626
.
31.
Neofytou
,
P.
, 2005, “
A 3rd Order Upwind Finite Volume Method for Generalized Newtonian Fluid Flows
,”
Adv. Eng. Software
0965-9978,
36
, pp.
664
680
.
32.
Kim
,
M. E.
,
Brown
,
R. A.
, and
Armstrong
,
R. C.
, 1983, “
The Roles of Inertia and Shear-Thinning in Flow of an Inelastic Liquid Through an Axisymmetric Sudden Contraction
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
13
, pp.
341
363
.
33.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
, 1982, “
Streamline Upwind/Petrov-Galerkin Formulations for Convective Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
32
, pp.
199
259
.
34.
Almeida
,
R. C.
, and
Galeão
,
A. C.
, 1999, “
An Adaptive Petrov-Galerkin Formulation for the Compressible Euler and Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
129
, pp.
157
176
.
You do not currently have access to this content.