Wind-tunnel steady-state unidirectional pressure-drop measurements for airflow through nine compressed and uncompressed isotropic open-cell aluminum foam samples, having different porosities and pore densities, were undertaken. The compressed foam produced significantly higher pressure drop, which increased with increasing Darcian velocity following the quadratic Forchheimer equation. The permeability and the inertia coefficient data for the compressed foam showed less scatter compared to those for the uncompressed foam. Both were correlated using an Ergun-like equation, with the correlation being better for the permeability. The permeability correlation predicted the results of some previous studies very well. The friction factor correlated well with the Reynolds number.

1.
Zhou
,
J.
,
Mercer
,
C.
, and
Soboyejo
,
W. O.
, 2002, “
An Investigation of the Microstructure and Strength of Open-Cell 6010 Aluminum Foam
,”
Metall. Mater. Trans. A
1073-5623,
33A
(
5
), pp.
1413
1427
.
2.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
, 2000,
Metal Foams, a Design Guide
,
Butterworth-Heinemann
, Woburn, MA, Chap. 1, pp.
181
188
.
3.
Sullines
,
D.
, and
Daryabeige
,
K.
, 2001, “
Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam
,”
Proc. 35th AIAA Thermophysics Conference
, Anaheim, CA, June 11–14, IAAA Paper No. 2001–2819.
4.
Vafai
,
K.
, and
Tien
,
C. L.
, 1982, “
Boundary and Inertia Effects on Convective Mass Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
25
(
8
), pp.
1183
1190
.
5.
Crosnier
,
S.
,
Rivam
,
R.
,
Bador
,
B.
, and
Blet
,
V.
, 2003, “
Modeling of Gas Flow through Metallic Foams
,”
Presented at the 1st European Hydrogen Energy Conference
, Sept. 2–5, Alpexpo-Alpes Congrés, Grenobel, France.
6.
Khayargoli
,
P.
,
Loya
,
V.
,
Lefebvre
,
L. P.
, and
Medraj
,
M.
, 2004, “
The Impact of Microstructure on the Permeability of Metal Foams
,”
Proc. the CSME 2004
, June 1–4, London, Canada, pp.
220
228
.
7.
Bastawros
,
A. F.
, 1998, “
Effectiveness of Open-Cell Metallic Foams for High Power Electronic Cooling
,”
Presented at Symposium on the Thermal Management of Electronics
, IMECE, Anaheim, CA.
8.
Kaviany
,
M.
, 1995,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
, New York, Chap. 2.
9.
Lage
,
J. L.
, 1998, “
The Fundamental Theory of Flow through Permeable Media form Darcy to Turbulence
,” in
Transport Phenomena in Porous Media
,
D. B.
Ingham
and
I.
Pop
, eds.,
Pergamon
, New York, pp.
1
30
.
10.
Nield
,
D. A.
, 2002, “
Modeling Fluid Flow in Saturated Porous Media and at Interfaces
,” in
Transport Phenomena in Porous Media II
,
D. B.
Ingham
and
I.
Pop
, eds.,
Pergamon
, New York, pp.
1
19
.
11.
Nield
,
D. A.
, and
Bejan
,
A.
, 1999,
Convection in Porous Media
, 2nd ed.,
Springer
, New York, Chap. 1.
12.
Bastawros
,
A. F.
,
Evans
,
A. G.
, and
Stone
,
H. A.
, 1998, “
Evaluation of Cellular Metal Heat Transfer Media
,” MECH 325, Harvard University Report, Cambridge, MA.
13.
Lage
,
J. L.
,
Antohe
,
B. V.
, and
Nield
,
D. A.
, 1997, “
Two Types of Nonlinear Pressure-Drop Versus Flow-Rate Relation Observed for Saturated Porous Media
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
700
706
.
14.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
, 2002, “
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
120
129
.
15.
Seguin
,
D.
,
Montillet
,
A.
, and
Comiti
,
J.
, 1998, “
Experimental Characterization of Flow Regimes in Various Porous Media-I: Limit of Laminar Flow Regime
,”
Chem. Eng. Sci.
0009-2509,
53
(
21
), pp.
3751
3761
.
16.
Decker
,
S.
,
Mößbauer
,
S.
,
Nemoda
,
D. T.
, and
Zapf
,
T.
, 2000, “
Detailed Experimental Characterization and Numerical Modeling of Heat and Mass Transport Properties of Highly Porous Media for Solar Receivers and Porous Burners
,” Lehrstuhl für Strömungsmechanik Universität Erlangen-Nürnberg Cauerstr. 4, D-91058 Erlangen, Germany.
17.
Tadrist
,
L.
,
Miscevic
,
M.
,
Rahli
,
O.
, and
Topin
,
F.
, 2004, “
About the Use of Fibrous Materials in Compact Heat Exchangers
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
, pp.
193
199
.
18.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
, 2000, “
Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
572
578
.
19.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
, 2000, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
0195-928X,
21
(
2
), pp.
453
464
.
20.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2002, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1017
1031
.
21.
Du Plessis
,
J. P.
,
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
, 1994, “
Pressure Drop Prediction for Flow through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
0009-2509,
49
, pp.
3545
3553
.
22.
Fourie
,
J. G.
, and
Du Plessis
,
J. P.
, 2002, “
Pressure Drop Modeling in Cellular Metallic Foams
,”
Chem. Eng. Sci.
0009-2509,
57
, pp.
2781
2789
.
23.
Despois
,
J. F.
, and
Mortensen
,
A.
, 2005, “
Permeability of Open-Cell Microcellular Materials
,”
Acta Mater.
1359-6454,
53
, pp.
1381
1388
.
24.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
, 2003, “
Simulation of Flow through Open Cell Metal Foams Using an Idealized Periodic Cell Structure
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
825
834
.
25.
Schmierer
,
E. N.
,
Razani
,
A.
,
Keating
,
S.
, and
Melton
,
T.
, 2004, “
Characterization of High Porosity Open-Celled Metal Foam Using Computed Tomography
,” Proc. the ASME International Mechanical Engineering Congress, Nov. 13–20, Anaheim, CA.
26.
Benouali
,
A.
,
Froyen
,
L.
,
Delerue
,
J. F.
, and
Wevers
,
M.
, 2002, “
Mechanical Analysis and Microstructure Characterization of Metal Foams
,”
Mater. Sci. Technol.
0267-0836,
18
, pp.
489
494
.
27.
Olurin
,
O. B.
,
Arnold
,
M.
,
Körner
,
C.
, and
Singer
,
R. F.
, 2002, “
The Investigation of Morphometric Parameters of Aluminum Foams Using Micro-Computed Tomography
,”
Mater. Sci. Eng., A
0921-5093,
328
, pp.
334
343
.
28.
Scheffler
,
F.
,
Herrmann
,
R.
,
Schwieger
,
W.
, and
Scheffler
,
M.
, 2004, “
Preparation and Properties of an Electrically Heatable Aluminum Foam/Zeolite Composite
,”
Microporous Mesoporous Mater.
1387-1811,
67
, pp.
53
59
.
29.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
, 2003, “
Metal Foams As Compact High Performance Heat Exchangers
,”
Mech. Mater.
0167-6636,
35
, pp.
1161
1176
.
30.
Boomsma
,
K.
, and
Poulikakos
, 2002, “
The Effect of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
263
272
.
31.
Antohe
,
B.
,
Lage
,
J. L.
,
Price
,
D. C.
, and
Weber
,
R. M.
, 1997, “
Experimental Determination of the Permeability and Inertial Coefficients of Mechanically Compressed Aluminum Porous Matrices
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
404
412
.
32.
Dukhan
,
N.
, and
Alvarez
,
A.
, 2004, “
Pressure Drop Measurements for Air Flow through Open-Cell Aluminum Foam
,” Proc. ASME International Engineering Congress, Nov. 13–19, Anaheim, CA.
33.
Figliola
,
R.
, and
Beasly
,
D.
, 2000,
Theory and Design for Mechanical Measurements
,
Wiley
, New York, pp.
152
160
.
You do not currently have access to this content.