Open-cell aluminum foams were investigated using water to determine their hydraulic characteristics. Maximum fluid flow velocities achieved were 1.042 m/s. The permeability and form coefficient varied from 2.46×1010m2 and 8701 m1 to 3529×1010m2 and 120 m1, respectively. It was determined that the flowrate range influenced these calculated parameters, especially in the transitional regime where the permeability based Reynolds number varied between unity and 26.5. Beyond the transition regime where ReK30, the permeability and form coefficient monotonically approached values which were reported as being calculated at the maximum flow velocities attained. The results obtained in this study are relevant to engineering applications employing metal foams ranging from convection heat sinks to filters and flow straightening devices.

1.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2001
, “
On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam
,”
Int. J. Heat Mass Transf.
,
44
, pp.
827
836
.
2.
Okuyama
,
M.
, and
Abe
,
Y.
,
2000
, “
Measurement of Velocity and Temperature Distributions in a Highly Porous Medium
,”
Journal of Porous Media
,
3
, pp.
193
206
.
3.
Schlegel
,
A.
,
Benz
,
P.
, and
Buser
,
S.
,
1993
, “
Wa¨rmeu¨bertragung und Druckabfall in keramischen Schaumstrukturen bei erzwungener Stro¨mung
,”
Wa¨rme- und Stoffu¨bertragung
,
28
, pp.
259
266
.
4.
Kaviany, M., 1995, Principles of Heat Transfer in Porous Media, Second ed., Springer-Verlag, New York.
5.
Lage, J. L., 1998, “The Fundamental Theory of Flow Through Permeable Media from Darcy to Turbulence,” Transport Phenomena in Porous Media, D. B. Ingham and I. Pop, eds., Elsevier Science, Oxford, pp. 1–30.
6.
Darcy, H., 1856, Les Fontaines Publiques de la ville de Dijon., Dalmont, Paris.
7.
Kru¨ger
,
E.
,
1918
, “
Die Grundwasserbewegung
,”
Internationale Mitteilungen fu¨r Bodenkunde
,
8
, pp.
105
105
.
8.
Scheidegger, A. E., 1974, The Physics of Flows Through Porous Media, Third ed., University of Toronto Press, Toronto.
9.
Fand
,
R. M.
,
Kim
,
B. Y. K.
,
Lam
,
A. C. C.
, and
Phan
,
R. T.
,
1987
, “
Resistance to the Flow of Fluids through Simple and Complex Porous Media whose Matrices are Composed of Randomly Packed Spheres
,”
ASME J. Fluids Eng.
,
109
, pp.
268
274
.
10.
Macdonald
,
I. F.
,
El-Sayed
,
M. S.
,
Mow
,
K.
, and
Dullien
,
F. A. L.
,
1979
, “
Flow through porous media: The Ergun equation revisited
,”
Ind. Eng. Chem. Fundam.
,
18
, pp.
199
208
.
11.
Diedericks
,
G. P. J.
, and
Du Plessis
,
J. P.
,
1997
, “
Modeling of flow through homogeneous foams
,”
Mathematical Engineering in Industry
,
6
, pp.
133
154
.
12.
Dupuit, J., 1863, Etudes Theoriques et Pratiques sur le Mouvement des Eaux., Dunod, Paris.
13.
Beckermann
,
C.
, and
Viskanta
,
R.
,
1986
, “
Forced convection boundary layer flow and heat transfer along a flat plate embedded in a porous medium
,”
Int. J. Heat Mass Transf.
,
30
, pp.
1547
1551
.
14.
Amiri
,
A.
, and
Vafai
,
K.
,
1994
, “
Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media
,”
Int. J. Heat Mass Transf.
,
37
, pp.
939
954
.
15.
Mehta
,
D.
, and
Hawley
,
M. C.
,
1969
, “
Wall effect in packed columns
,”
I & EC Process Design and Development
,
8
, pp.
280
282
.
16.
Baumeister, J., 1997, “U¨berblick: Verfahren zur Herstellung von Metallscha¨umen,” presented at Symposium Metallscha¨ume, J. Banhart, Verlag Metall Innovation Technologie, Bremen, pp. 3–14.
17.
Ergun
,
S.
,
1952
, “
Fluid Flow through Packed Columns
,”
Chem. Eng. Prog.
,
48
, pp.
89
94
.
18.
Renken
,
K.
, and
Poulikakos
,
D.
,
1988
, “
Experiment and analysis of forced convective heat transport in a packed bed of spheres
,”
Int. J. Heat Mass Transf.
,
31
, pp.
1399
1408
.
19.
Poulikakos
,
D.
, and
Renken
,
K.
,
1987
, “
Forced Convection in a Channel Filled With Porous Medium, Including the Effects of Flow Inertia, Variable Porosity, and Brinkmann Friction
,”
ASME J. Heat Transfer
,
109
, pp.
880
888
.
20.
Du Plessis
,
J. P.
,
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
,
1994
, “
Pressure Drop Prediction for Flow through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
,
49
, pp.
3545
3553
.
21.
Smit
,
G. J. F.
, and
du Plessis
,
J. P.
,
1999
, “
Modeling of non-Newtonian purely viscous flow through isotropic high porosity synthetic foams
,”
Chem. Eng. Sci.
,
54
, pp.
645
654
.
22.
Sodre
,
J. R.
, and
Parise
,
J. A. R.
,
1997
, “
Friction factor determination for flow through finite wire-mesh woven-screen matrices
,”
ASME J. Fluids Eng.
,
119
, pp.
847
851
.
23.
Dybbs, A., and Edwards, R. V., 1975, “Department of Fluid, Thermal, and Aerospace Report,” presented at Workshop on Heat and Mass Transfer in Porous Media, FTAS/TR (Case Western Reserve University), Springfield, VA., pp. 75–117.
24.
Lage
,
J. L.
,
Antohe
,
B. V.
, and
Nield
,
D. A.
,
1997
, “
Two Types of Nonlinear Pressure-Drop Versus Flow-Rate Relation Observed for Saturated Porous Media
,”
ASME J. Fluids Eng.
,
119
, pp.
700
706
.
25.
Forchheimer
,
P.
,
1901
, “
Wasserbewegung durch Boden
,”
Z. Ver. Deutsch. Ing.
,
45
, pp.
1736
41
pp. 1781–1788.
26.
Givler
,
R. C.
, and
Altobelli
,
S. A.
,
1994
, “
A determination of the effective viscosity for the Brinkmann-Forchheimer flow model
,”
J. Fluid Mech.
,
258
, pp.
355
370
.
27.
Antohe
,
B. V.
,
Lage
,
J. L.
,
Price
,
D. C.
, and
Weber
,
R. M.
,
1997
, “
Experimental Determination of Permeability and Inertia Coefficients of Mechanically Compressed Aluminum Porous Matrices
,”
ASME J. Fluids Eng.
,
119
, pp.
404
412
.
28.
1999, Duocel Aluminum Foam Data Sheet., ERG Material and Aerospace, Oakland.
29.
Taylor, J. R., 1997, An Introduction to Error Analysis, Second ed., University Science Books, Sausalito.
You do not currently have access to this content.