In approaching the design of an electrorheology-based, semi-active suspension, the electrorheological component (ER damper) can be built as either a flow-mode, shear-mode, or mixed-mode type of damper. The source of damping force in the flow-mode is exclusively from flow-induced pressure drop across a valve, while that in the shear-mode is purely from the shear stress on a sliding surface. The dynamics of the fluid flow are included in the derivation of the zero-field damping forces. The control effectiveness is found to be strongly related to the dynamic constant (which is proportional to the square root of the vibration frequency) and, for shear-and flow-mode dampers, the ratio of the piston area to the cross-section of the ER control gap. To achieve the same performance, a flow-mode ER damper is not as compact and efficient as a shear-mode ER damper. With the same ER damping force, a mixed-mode damper is more compact than a shear-mode damper. However, the mixed-mode damper does not have as a low zero-field damping force as the shear-mode damper. The analysis is based on the assumption that the ER fluid is Bingham plastic.

This content is only available via PDF.
You do not currently have access to this content.