Abstract

In the quest for decarbonizing internal combustion engines, ammonia (NH3) is recognized as a viable alternative fuel due to its zero-carbon emission profile, positioning it as a potential substitute for conventional petroleum fuels. However, the suboptimal combustion characteristics of ammonia pose challenges for its direct application in engines. The introduction of hydrogen (H2) as a combustion enhancer shows promise in improving ammonia viability for engine use. While previous studies have confirmed the benefits of hydrogen addition to ammonia for enhanced engine performance, comprehensive analysis of the precise ammonia-to-hydrogen ratio for optimal efficacy remains scarce. This research aims to bridge this gap by evaluating hydrogen–ammonia mixtures for achieving methane-equivalent laminar flame speeds under typical engine conditions, with a focus on the kernel inception process primarily driven by laminar flames. The findings indicate that a minimum of 20% hydrogen mixed with ammonia is necessary to facilitate rapid spark inception, although it does not reach the laminar flame speed of methane. Additionally, employing a high compression ratio and operating near stoichiometry could lower the required hydrogen–ammonia ratio. Considering the challenges in generating ample hydrogen with NH3 dissociators and the need for operational conditions like full-load and low-speed to lessen hydrogen demand, ammonia–hydrogen fuel blends are deemed most suitable for stationary engine applications in the near term.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Mørch
,
C. S.
,
Bjerre
,
A.
,
Gøttrup
,
M. P.
,
Sorenson
,
S. C.
, and
Schramm
,
J.
,
2011
, “
Ammonia/Hydrogen Mixtures in an SI-Engine: Engine Performance and Analysis of a Proposed Fuel System
,”
Fuel
,
90
(
2
), pp.
854
864
.
2.
Novella
,
R.
,
Pastor
,
J.
,
Gomez-Soriano
,
J.
, and
Sánchez-Bayona
,
J.
,
2023
, “
Numerical Study on the Use of Ammonia/Hydrogen Fuel Blends for Automotive Spark-Ignition Engines
,”
Fuel
,
351
, p.
128945
.
3.
Wang
,
D.
,
Ji
,
C.
,
Wang
,
S.
,
Yang
,
J.
, and
Wang
,
Z.
,
2021
, “
Numerical Study of the Premixed Ammonia-Hydrogen Combustion Under Engine-Relevant Conditions
,”
Int. J. Hydrogen Energy
,
46
(
2
), pp.
2667
2683
.
4.
Yang
,
W.
,
Dinesh
,
K. R.
,
Luo
,
K. H.
, and
Thevenin
,
D.
,
2022
, “
Direct Numerical Simulation of Turbulent Premixed Ammonia and Ammonia-Hydrogen Combustion Under Engine-Relevant Conditions
,”
Int. J. Hydrogen Energy
,
47
(
20
), pp.
11083
11100
.
5.
Ji
,
C.
,
Qiang
,
Y.
,
Wang
,
S.
,
Xin
,
G.
,
Wang
,
Z.
,
Hong
,
C.
, and
Yang
,
J.
,
2024
, “
Numerical Investigation on the Combustion Performance of Ammonia-Hydrogen Spark-Ignition Engine Under Various High Compression Ratios and Different Spark-Ignition Timings
,”
Int. J. Hydrogen Energy
,
56
, pp.
817
827
.
6.
Huang
,
Q.
, and
Liu
,
J.
,
2024
, “
Preliminary Assessment of the Potential for Rapid Combustion of Pure Ammonia in Engine Cylinders Using the Multiple Spark Ignition Strategy
,”
Int. J. Hydrogen Energy
,
55
, pp.
375
385
.
7.
Yang
,
R.
,
Liu
,
Z.
, and
Liu
,
J.
,
2024
, “
The Methodology of Decoupling Fuel and Thermal Nitrogen Oxides in Multi-Dimensional Computational Fluid Dynamics Combustion Simulation of Ammonia-Hydrogen Spark Ignition Engines
,”
Int. J. Hydrogen Energy
,
55
, pp.
300
318
.
8.
Liu
,
J.
, and
Liu
,
Z.
,
2024
, “
In-Cylinder Thermochemical Fuel Reforming for High Efficiency in Ammonia Spark-Ignited Engines Through Hydrogen Generation From Fuel-Rich Operations
,”
Int. J. Hydrogen Energy
,
54
, pp.
837
848
.
9.
Mercier
,
A.
,
Mounaïm-Rousselle
,
C.
,
Brequigny
,
P.
,
Bouriot
,
J.
, and
Dumand
,
C.
,
2022
, “
Improvement of SI Engine Combustion With Ammonia as Fuel: Effect of Ammonia Dissociation Prior to Combustion
,”
Fuel Commun.
,
11
, p.
100058
.
10.
Frigo
,
S.
,
Gentili
,
R.
, and
De Angelis
,
F.
,
2014
, “
Further Insight into the Possibility to Fuel a SI Engine With Ammonia Plus Hydrogen
,” SAE Technical Paper No. 2014-32-0082.
11.
Chiong
,
M. C.
,
Chong
,
C. T.
,
Ng
,
J. H.
,
Mashruk
,
S.
,
Chong
,
W. W. F.
,
Samiran
,
N. A.
,
Mong
,
G. R.
, and
Valera-Medina
,
A.
,
2021
, “
Advancements of Combustion Technologies in the Ammonia-Fuelled Engines
,”
Energy Convers. Manage.
,
244
, p.
114460
.
12.
Frigo
,
S.
, and
Gentili
,
R.
,
2013
, “
Analysis of the Behaviour of a 4-Stroke SI Engine Fuelled With Ammonia and Hydrogen
,”
Int. J. Hydrogen Energy
,
38
(
3
), pp.
1607
1615
.
13.
Ryu
,
K.
,
Zacharakis-Jutz
,
G. E.
, and
Kong
,
S. C.
,
2014
, “
Performance Enhancement of Ammonia-Fueled Engine by Using Dissociation Catalyst for Hydrogen Generation
,”
Int. J. Hydrogen Energy
,
39
(
5
), pp.
2390
2398
.
14.
Comotti
,
M.
, and
Frigo
,
S.
,
2015
, “
Hydrogen Generation System for Ammonia–Hydrogen Fuelled Internal Combustion Engines
,”
Int. J. Hydrogen Energy
,
40
(
33
), pp.
10673
10686
.
15.
Elbaz
,
A. M.
,
Wang
,
S.
,
Guiberti
,
T. F.
, and
Roberts
,
W. L.
,
2022
, “
Review on the Recent Advances on Ammonia Combustion From the Fundamentals to the Applications
,”
Fuel Commun.
,
10
, p.
100053
.
16.
Dolan
,
R. H.
,
Anderson
,
J. E.
, and
Wallington
,
T. J.
,
2021
, “
Outlook for Ammonia as a Sustainable Transportation Fuel
,”
Sustain. Energy Fuels
,
5
(
19
), pp.
4830
4841
.
17.
Kurien
,
C.
, and
Mittal
,
M.
,
2022
, “
Review on the Production and Utilization of Green Ammonia as an Alternate Fuel in Dual-Fuel Compression Ignition Engines
,”
Energy Convers. Manage.
,
251
, p.
114990
.
18.
Al-Aboosi
,
F. Y.
,
El-Halwagi
,
M. M.
,
Moore
,
M.
, and
Nielsen
,
R. B.
,
2021
, “
Renewable Ammonia as an Alternative Fuel for the Shipping Industry
,”
Curr. Opin. Chem. Eng.
,
31
, p.
100670
.
19.
Cardoso
,
J. S.
,
Silva
,
V.
,
Rocha
,
R. C.
,
Hall
,
M. J.
,
Costa
,
M.
, and
Eusébio
,
D.
,
2021
, “
Ammonia as an Energy Vector: Current and Future Prospects for Low-Carbon Fuel Applications in Internal Combustion Engines
,”
J. Cleaner Prod.
,
296
, p.
126562
.
20.
Lhuillier
,
C.
,
Brequigny
,
P.
,
Contino
,
F.
, and
Mounaïm-Rousselle
,
C.
,
2021
, “
Experimental Investigation on Ammonia Combustion Behavior in a Spark-Ignition Engine by Means of Laminar and Turbulent Expanding Flames
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5859
5868
.
21.
Lhuillier
,
C.
,
Brequigny
,
P.
,
Contino
,
F.
, and
Rousselle
,
C.
,
2019
, “
Combustion Characteristics of Ammonia in a Modern Spark-Ignition Engine
,” SAE Technical Paper No 2019-24-0237.
22.
Lhuillier
,
C.
,
Brequigny
,
P.
,
Contino
,
F.
, and
Rousselle
,
C.
,
2019
, “
Performance and Emissions of an Ammonia-Fueled SI Engine With Hydrogen Enrichment
,” SAE Technical Paper No. 2019-24-0137.
23.
Westlye
,
F. R.
,
Ivarsson
,
A.
, and
Schramm
,
J.
,
2013
, “
Experimental Investigation of Nitrogen Based Emissions From an Ammonia Fueled SI-Engine
,”
Fuel
,
111
, pp.
239
247
.
24.
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2015
, “
Experimental and Modeling Study on the High-Temperature Oxidation of Ammonia and Related NOx Chemistry
,”
Combust. Flame
,
162
(
3
), pp.
554
570
.
25.
Xiao
,
H.
,
Valera-Medina
,
A.
, and
Bowen
,
P. J.
,
2017
, “
Modeling Combustion of Ammonia/Hydrogen Fuel Blends Under Gas Turbine Conditions
,”
Energy Fuels
,
31
(
8
), pp.
8631
8642
.
26.
Bhaskaran
,
K. A.
,
Gupta
,
M. C.
, and
Just
,
T.
,
1973
, “
Shock Tube Study of the Effect of Unsymmetric Dimethyl Hydrazine on the Ignition Characteristics of Hydrogen-Air Mixtures
,”
Combust. Flame
,
21
(
1
), pp.
45
48
.
27.
Liu
,
J.
, and
Liu
,
J.
,
2024
, “
Experimental Investigation of the Effect of Ammonia Substitution Ratio on an Ammonia-Diesel Dual-Fuel Engine Performance
,”
J. Cleaner Prod.
,
434
, p.
140274
.
28.
Das
,
A. K.
,
Sung
,
C. J.
,
Zhang
,
Y.
, and
Mittal
,
G.
,
2012
, “
Ignition Delay Study of Moist Hydrogen/Oxidizer Mixtures Using a Rapid Compression Machine
,”
Int. J. Hydrogen Energy
,
37
(
8
), pp.
6901
6911
.
29.
Lhuillier
,
C.
,
Brequigny
,
P.
,
Contino
,
F.
, and
Mounaïm-Rousselle
,
C.
,
2020
, “
Experimental Study on Ammonia/Hydrogen/Air Combustion in Spark Ignition Engine Conditions
,”
Fuel
,
269
, p.
117448
.
30.
Xin
,
G.
,
Ji
,
C.
,
Wang
,
S.
,
Hong
,
C.
,
Meng
,
H.
, and
Yang
,
J.
,
2023
, “
Experimental Study on the Effect of Hydrogen Substitution Rate on Combustion and Emission Characteristics of Ammonia Internal Combustion Engine Under Different Excess Air Ratio
,”
Fuel
,
343
, p.
127992
.
31.
Li
,
J.
,
Zhang
,
R.
,
Pan
,
J.
,
Wei
,
H.
,
Shu
,
G.
, and
Chen
,
L.
,
2023
, “
Ammonia and Hydrogen Blending Effects on Combustion Stabilities in Optical SI Engines
,”
Energy Convers. Manage.
,
280
, p.
116827
.
32.
Dinesh
,
M. H.
,
Pandey
,
J. K.
, and
Kumar
,
G. N.
,
2022
, “
Study of Performance, Combustion, and NOx Emission Behavior of an SI Engine Fuelled With Ammonia/Hydrogen Blends at Various Compression Ratio
,”
Int. J. Hydrogen Energy
,
47
(
60
), pp.
25391
25403
.
33.
Dinesh
,
M. H.
, and
Kumar
,
G. N.
,
2023
, “
Experimental Investigation of Variable Compression Ratio and Ignition Timing Effects on Performance, Combustion, and NOx Emission of an Ammonia/Hydrogen-Fuelled SI Engine
,”
Int. J. Hydrogen Energy
,
48
(
90
), pp.
35139
35152
.
34.
Yu
,
X.
,
Li
,
Y.
,
Zhang
,
J.
,
Guo
,
Z.
,
Du
,
Y.
,
Li
,
D.
,
Wang
,
T.
,
Shang
,
Z.
,
Zhao
,
Z.
, and
Zhang
,
J.
,
2024
, “
Effects of Hydrogen Blending Ratio on Combustion and Emission Characteristics of an Ammonia/Hydrogen Compound Injection Engine Under Different Excess Air Coefficients
,”
Int. J. Hydrogen Energy
,
49
, pp.
1033
1047
.
35.
D'Antuono
,
G.
,
Lanni
,
D.
,
Galloni
,
E.
, and
Fontana
,
G.
,
2023
, “
Comparison of the Performance and Operation Limits of an SI Engine Fueled With Neat Ammonia and Hydrogen-Ammonia Blends
,” SAE Technical Paper No. 2023-24-0042.
36.
Yan
,
Y.
,
Liu
,
Z.
, and
Liu
,
J.
,
2023
, “
An Evaluation of the Conversion of Gasoline and Natural Gas Spark Ignition Engines to Ammonia/Hydrogen Operation From the Perspective of Laminar Flame Speed
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
012302
.
37.
Liu
,
Z.
, and
Liu
,
J.
,
2022
, “
Machine Learning Assisted Analysis of an Ammonia Engine Performance
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p.
112307
.
38.
ANSYS. Inc
,
2021
,
Model Fuel Library Getting Started Guide
,
San Diego
.
39.
Goldmann
,
A.
, and
Dinkelacker
,
F.
,
2018
, “
Approximation of Laminar Flame Characteristics on Premixed Ammonia/Hydrogen/Nitrogen/Air Mixtures at Elevated Temperatures and Pressures
,”
Fuel
,
224
, pp.
366
378
.
40.
Bai
,
Z.
,
Wang
,
Z.
,
Yu
,
G.
,
Yang
,
Y.
, and
Metghalchi
,
H.
,
2019
, “
Experimental Study of Laminar Burning Speed for Premixed Biomass/Air Flame
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022206
.
41.
Gu
,
X. J.
,
Haq
,
M. Z.
,
Lawes
,
M.
, and
Woolley
,
R.
,
2000
, “
Laminar Burning Velocity and Markstein Lengths of Methane–Air Mixtures
,”
Combust. Flame
,
121
(
1–2
), pp.
41
58
.
42.
Vagelopoulos
,
C. M.
, and
Egolfopoulos
,
F. N.
,
1994
, “
Laminar Flame Speeds and Extinction Strain Rates of Mixtures of Carbon Monoxide With Hydrogen, Methane, And Air
,”
Symp. (Int.) Combust.
,
25
(
1
), pp.
1317
1323
.
43.
Krejci
,
M. C.
,
Mathieu
,
O.
,
Vissotski
,
A. J.
,
Ravi
,
S.
,
Sikes
,
T. G.
,
Petersen
,
E. L.
,
Kérmonès
,
A.
,
Metcalfe
,
W.
, and
Curran
,
H. J.
,
2013
, “
Laminar Flame Speed and Ignition Delay Time Data for the Kinetic Modeling of Hydrogen and Syngas Fuel Blends
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021503
.
44.
Dahoe
,
A. E.
,
2005
, “
Laminar Burning Velocities of Hydrogen–Air Mixtures From Closed Vessel Gas Explosions
,”
J. Loss Prev. Process Ind.
,
18
(
3
), pp.
152
166
.
45.
Hayakawa
,
A.
,
Goto
,
T.
,
Mimoto
,
R.
,
Arakawa
,
Y.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
Laminar Burning Velocity and Markstein Length of Ammonia/Air Premixed Flames at Various Pressures
,”
Fuel
,
159
, pp.
98
106
.
46.
Takizawa
,
K.
,
Takahashi
,
A.
,
Tokuhashi
,
K.
,
Kondo
,
S.
, and
Sekiya
,
A.
,
2008
, “
Burning Velocity Measurements of Nitrogen-Containing Compounds
,”
J. Hazard. Mater.
,
155
(
1–2
), pp.
144
152
.
47.
Lee
,
J. H.
,
Lee
,
S. I.
, and
Kwon
,
O. C.
,
2010
, “
Effects of Ammonia Substitution on Hydrogen/Air Flame Propagation and Emissions
,”
Int. J. Hydrogen Energy
,
35
(
20
), pp.
11332
11341
.
48.
Chen
,
Z.
,
2017
, “
Effects of Radiation Absorption on Spherical Flame Propagation and Radiation-Induced Uncertainty in Laminar Flame Speed Measurement
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1129
1136
.
49.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1982
, “
Burning Velocities of Methanol, Ethanol and Iso-Octane-Air Mixtures
,” Proceedings of the
19th Symposium (International) on Combustion/The Combustion Institute
,
Haifa, Israel
,
Aug. 8–13
, p.
275
.
50.
Dong
,
C.
,
Zhou
,
Q.
,
Zhao
,
Q.
,
Zhang
,
Y.
,
Xu
,
T.
, and
Hui
,
S.
,
2009
, “
Experimental Study on the Laminar Flame Speed of Hydrogen/Carbon Monoxide/Air Mixtures
,”
Fuel
,
88
(
10
), pp.
1858
1863
.
51.
Wang
,
X.
,
Sun
,
B. G.
, and
Luo
,
Q. H.
,
2019
, “
Energy and Exergy Analysis of a Turbocharged Hydrogen Internal Combustion Engine
,”
Int. J. Hydrogen Energy
,
44
(
11
), pp.
5551
5563
.
52.
Otomo
,
J.
,
Koshi
,
M.
,
Mitsumori
,
T.
,
Iwasaki
,
H.
, and
Yamada
,
K.
,
2018
, “
Chemical Kinetic Modeling of Ammonia Oxidation With Improved Reaction Mechanism for Ammonia/Air and Ammonia/Hydrogen/Air Combustion
,”
Int. J. Hydrogen Energy
,
43
(
5
), pp.
3004
3014
.
You do not currently have access to this content.