Abstract

One of the promising options for the decarbonization of industry dependent on heavy-duty vehicles is to use alternative fuels such as ammonia. The study investigates the environmental impact of five selected ammonia production technologies and compares them to diesel fuel: ammonia based on hydrogen from steam methane reforming (gray), ammonia based on steam methane reforming with carbon capture and storage (blue), ammonia based on hydrogen from electrolysis with electrical energy supplied by: PV (green PV), wind (green wind), and nuclear plant (pink). Environmental impact is assessed using the ReCiPE method based on three midpoint and two endpoint categories: climate change, fossil depletion, freshwater consumption, human health, and ecosystem quality. The climate change results per 1 MJ (LHV) are as follows: gray ammonia at 0.148 kg CO2 eq., blue ammonia at 0.0701 kg CO2 eq., green ammonia PV at 0.0197 kg CO2 eq., green ammonia wind at 0.01039 kg CO2 eq., pink ammonia at 0.00565 kg CO2 eq., and diesel (including its stoichiometric combustion) at 0.0851 kg CO2 eq. The life cycle assessment (LCA) was performed using the lca for experts (GaBi) software, with Sphera's comprehensive Managed LCA Content as the primary data source for the life cycle inventory. The study indicates nuclear and renewable-based routes to be the best options in terms of the climate change and human health categories; however, their high impact on freshwater consumption and ecosystem quality is revealed. Still, ammonia is proven to be an effective solution toward decarbonization, as compared to diesel, given its blue, green, or pink source.

References

1.
Masson-Delmotte
,
V.
,
Zhai
,
P.
,
Pirani
,
A.
,
Connors
,
S.
,
Péan
,
C.
,
Berger
,
S.
,
Caud
,
N.
, et al
,
2021
, “IPCC, 2021: Summary for Policymakers,”
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
,
Cambridge University Press
,
Cambridge, United Kingdom and New York, NY
, pp.
3
32
.
2.
Lasocki
,
J.
,
2018
, “
Ammonia and Conventional Engine Fuels: Comparative Environmental Impact Assessment
,”
E3S Web Conf.
,
44
, p.
00091
.
3.
Klüssmann
,
J. N.
,
Ekknud
,
L. R.
,
Ivarsson
,
A.
, and
Schramm
,
J.
,
2020
, “Ammonia Application in IC Engines,” IEA-AMF Technology Collaboration Programme on Advanced Motor Fuels.
4.
Bhandari
,
R.
,
Trudewind
,
C. A.
, and
Zapp
,
P.
,
2014
, “
Life Cycle Assessment of Hydrogen Production via Electrolysis—A Review
,”
J. Cleaner Prod.
,
85
, pp.
151
163
.
5.
Koroneos
,
C.
,
Dompros
,
A.
,
Roumbas
,
G.
, and
Moussiopoulos
,
N.
,
2004
, “
Life Cycle Assessment of Hydrogen Fuel Production Processes
,”
Int. J. Hydrogen Energy
,
29
(
14
), pp.
1443
1450
.
6.
Lubis
,
L. L.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2010
, “
Life Cycle Assessment of Hydrogen Production Using Nuclear Energy: An Application Based on Thermo-Chemical Water Splitting
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021004
.
7.
Cetinkaya
,
E.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2012
, “
Life Cycle Assessment of Various Hydrogen Production Methods
,”
Int. J. Hydrogen Energy
,
37
(
3
), pp.
2071
2080
.
8.
Hacatoglu
,
K.
,
Rosen
,
M. A.
, and
Dincer
,
I.
,
2012
, “
Comparative Life Cycle Assessment of Hydrogen and Other Selected Fuels
,”
Int. J. Hydrogen Energy
,
37
(
13
), pp.
9933
9940
.
9.
Hajjaji
,
N.
,
Pons
,
M. N.
,
Renaudin
,
V.
, and
Houas
,
A.
,
2013
, “
Comparative Life Cycle Assessment of Eight Alternatives for Hydrogen Production From Renewable and Fossil Feedstock
,”
J. Cleaner Prod.
,
44
, pp.
177
189
.
10.
Tetteh
,
D. A.
, and
Salehi
,
S.
,
2023
, “
The Blue Hydrogen Economy: A Promising Option for the Near-to-Mid-Term Energy Transition
,”
ASME J. Energy Resour. Technol.
,
145
(
4
), p.
042701
.
11.
Chen
,
Yisong
,
Hu
,
Xu
, and
Liu
,
Jiahui
,
2019
, “
Life Cycle Assessment of Fuel Cell Vehicles Considering the Detailed Vehicle Components: Comparison and Scenario Analysis in China Based on Different Hydrogen Production Schemes
,”
Energies
,
14
(
15
), p.
3031
.
12.
Ghavam
,
S.
,
Vahdati
,
M.
,
Wilson
,
I. A. G.
, and
Styring
,
P.
,
2021
, “
Sustainable Ammonia Production Processes
,”
Front. Energy Res.
,
9
.
13.
Bicer
,
Y.
,
Dincer
,
I.
,
Zamfirescu
,
C.
,
Vezina
,
G.
, and
Raso
,
F.
,
2016
, “
Comparative Life Cycle Assessment of Various Ammonia Production Methods
,”
J. Cleaner Prod.
,
135
, pp.
1379
1395
.
14.
Dincer
,
I.
, and
Bicer
,
Y.
,
2017
, “
Mitacs Accelerate Project Final Report Application Ref.: IT08015 Comprehensive Evaluation of NH3 Production and Utilization Options for Clean Energy Applications
,” University of Ontario Institute of Technology.
15.
Angeles
,
D. A.
,
Are
,
K. R. A. G.
,
Razon
,
L. F.
, and
Tan
,
R. R.
,
2017
, “
Carbon and Nitrogen Footprint Optimisation of Ammonia as an Automotive Fuel
,”
Chem. Eng. Trans.
,
61
, pp.
271
276
.
16.
Chisalita
,
D. A.
,
Petrescu
,
L.
, and
Cormos
,
C. C.
,
2020
, “
Environmental Evaluation of European Ammonia Production Considering Various Hydrogen Supply Chains
,”
Renewable Sustainable Energy Rev.
,
130
, p.
109964
.
17.
Singh
,
V.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “Chapter 4.2-Life Cycle Assessment of Ammonia Production Methods,”
Exergetic, Energetic and Environmental Dimensions
,
I.
Dincer
,
C. O.
Colpan
, and
O.
Kizilkan
, eds.,
Academic Press
,
Amsterdam, The Netherlands
, pp.
935
959
.
18.
Karaca
,
A. E.
,
Dincer
,
I.
, and
Gu
,
J.
,
2020
, “
A Comparative Life Cycle Assessment on Nuclear-Based Clean Ammonia Synthesis Methods
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102106
.
19.
Tallaksen
,
J.
,
Bauer
,
F.
,
Hulteberg
,
C.
,
Reese
,
M.
, and
Ahlgren
,
S.
,
2015
, “
Nitrogen Fertilizers Manufactured Using Wind Power: Greenhouse Gas and Energy Balance of Community-Scale Ammonia Production
,”
J. Cleaner Prod.
,
107
, pp.
626
635
.
20.
Ren
,
K.
,
Zhang
,
T.
,
Tan
,
X.
,
Zhai
,
Y.
,
Bai
,
Y.
,
Shen
,
X.
,
Jia
,
Y.
, and
Hong
,
J.
,
2021
, “
Life Cycle Assessment of Ammonia Synthesis Based on Pulverized Coal Entrained Flow Gasification Technology in China
,”
J. Cleaner Prod.
,
328
, p.
129658
.
21.
Zhang
,
Y.
,
Liu
,
H.
,
Li
,
J.
,
Deng
,
Y.
,
Miao
,
X.
,
Xu
,
D.
,
Liu
,
S.
,
Xie
,
K.
, and
Tian
,
Y.
,
2022
, “
Life Cycle Assessment of Ammonia Synthesis in China
,”
Int. J. Life Cycle Assess.
,
27
(
1
), pp.
50
61
.
22.
European Commission—Joint Research Centre—Institute for Environment and Sustainability
,
2010
,
International Reference Life Cycle Data System (ILCD) Handbook—Framework and Requirements for Life Cycle Impact Assessment Models and Indicators
, 1st ed., EUR 24586 EN,
Publications Office of the European Union
,
Luxembourg
.
23.
Lubbe
,
F.
,
Rongé
,
J.
,
Bosserez
,
T.
, and
Martens
,
J. A.
,
2023
, “
Golden Hydrogen
,”
Curr. Opin. Green Sustain. Chem.
,
39
, p.
100732
.
24.
Darmawan
,
A.
,
Aziz
,
M.
,
Ajiwibowo
,
M. W.
,
Biddinika
,
M. K.
,
Tokimatsu
,
K.
, and
Lokahita
,
B.
,
2022
, “Chapter 5—Integrated Ammonia Production From the Empty Fruit Bunch,”
Innovative Energy Conversion From Biomass Waste
,
A.
Darmawan
, and
M.
Aziz
, eds.,
Elsevier
,
New York
, pp.
149
185
.
25.
Future of hydrogen
,
2019
, “
Seizing Today's Opportunities
,” Report Prepared by the IEA for the G20, Japan.
26.
Riis
,
T.
,
Hagen
,
E. F.
,
Vie
,
P. J. S.
, and
Ulleberg
,
Ø
,
2006
, “
Hydrogen Production and Storage: R&D Priorities and Gaps
,” IEA.
27.
Lejda
,
K.
,
2013
, “
Wodór w Aplikacjach do Środków Napędu w Transporcie Drogowym
,” Wydawnictwo KORAW.
28.
Brauns
,
J.
, and
Turek
,
T.
,
2020
, “
Alkaline Water Electrolysis Powered by Renewable Energy: A Review
,”
Processes
,
8
(
2
), p.
248
.
29.
Spatari
,
S.
,
Betz
,
M.
,
Florin
,
H.
,
Baitz
,
M.
, and
Faltenbacher
,
M.
,
2001
, “
Using Gabi 3 to Perform Life Cycle Assessment and Life Cycle Engineering
,”
Int. J. Life Cycle Assess.
,
6
(
2
), pp.
81
84
.
30.
Sphera.
,
(n.d.)
, Managed LCA Content (GaBi Databases), https://sphera.com/life-cycle-assessment-lca-database/, Accessed April 1, 2023.
31.
Sundin
,
C.
,
2019
, “
Environmental Assessment of Electrolyzers for Hydrogen gas Production
,”
Master's thesis
,
KTH Royal Institute of Technology School of Engineering Sciences in Chemistry, Biotechnology and Health
.
32.
Koj
,
J.
,
Wulf
,
C.
,
Schreiber
,
A.
, and
Zapp
,
P.
,
2017
, “
Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis
,”
Energies
,
10
(
7
), p.
860
.
33.
Huijbregts
,
M. A. J.
,
Steinmann
,
Z. J. N.
,
Elshout
,
P. M. F.
,
Stam
,
G.
,
Verones
,
F.
,
Vieira
,
M. D. M.
,
Hollander
,
A.
,
Zijp
,
M.
, and
van Zelm
,
R.
,
2016
, “
Recipe 2016 v1.1 a Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization
,” National Institute for Public Health and the Environment.
34.
Stavropoulos
,
P.
,
Giannoulis
,
C.
,
Papacharalampopoulos
,
A.
,
Foteinopoulos
,
P.
, and
Chryssolouris
,
G.
,
2016
, “
Life Cycle Analysis: Comparison Between Different Methods and Optimization Challenges
,”
Procedia CIRP
,
41
, pp.
626
631
.
You do not currently have access to this content.