Abstract

The identification of model parameters is complex and requires many approximations and laboratory investigations. Here, a novel approach to identifying these parameters is proposed, which uses experimental data, and a parameter estimation method to minimize a cost function made up of errors between the predicted and experimental deposit thickness. Parameters are determined for various ethanol–gasoline mixtures and lubricants. Simultaneously, the thermal and electrical properties of deposits are studied, and this information, coupled with the identified parameters, is utilized to infer potential deposit formation sources, mechanisms, and other elements that will influence the characteristics of the spark plug. It is found that the deposit formation model along with the identified parameters has the potential to reliably estimate the deposit growth with time as good correlations have been observed between measured and predicted spark plug deposit mass for all fuels and lubricants. The thermal and electrical conductivity of the spark plug deposit increases with a high ethanol fraction and high viscous oil, which results in increased chances of side sparking.

References

1.
Prem Anand
,
B.
,
Yadav
,
S. R.
,
Dhanadevi
,
S. R.
,
Kanimozhi
,
P.
, and
Pavadharani
,
T.
,
2020
, “
Exploration of Carbon Deposit on Spark Plug of Stratified Charged Gasoline Direct Injection Engine
,”
Int. J. Ambient Energy
,
41
(
9
), pp.
1049
1056
.
2.
Badawy
,
T.
,
Bao
,
X.
, and
Xu
,
H.
,
2017
, “
Impact of Spark Plug Gap on Flame Kernel Propagation and Engine Performance
,”
Appl. Energy
,
191
, pp.
311
327
.
3.
Kimbara
,
Y.
,
Noguchi
,
Y.
, and
Ishiguro
,
T.
,
1980
, “Study on Spark Plug Carbon Fouling,” SAE Technical Paper No. 800832.
4.
Quader
,
A. A.
, and
Dasch
,
C. J.
,
1992
, “Spark Plug Fouling: A Quick Engine Test,” SAE Technical Paper No. 920006.
5.
Sharma
,
N.
,
Agarwal
,
R. A.
, and
Agarwal
,
A. K.
,
2019
, “
Particulate Bound Trace Metals and Soot Morphology of Gasohol Fueled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022201
.
6.
Nguyen
,
D. C.
,
Hoang
,
A. T.
,
Tran
,
Q. V.
,
Hadiyanto
,
H.
,
Wattanavichien
,
K.
, and
Pham
,
V. V.
,
2021
, “
A Review on the Performance, Combustion, and Emission Characteristics of Spark-Ignition Engine Fueled With 2,5-Dimethylfuran Compared to Ethanol and Gasoline
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
040801
.
7.
Pyszczek
,
R.
,
Hahn
,
J.
,
Priesching
,
P.
, and
Teodorczyk
,
A.
,
2020
, “
Numerical Modeling of Spark Ignition in Internal Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
022202
.
8.
Cheng
,
S. W. S.
,
1994
, “A Physical Mechanism for Deposit Formation in a Combustion Chamber,” SAE Technical Paper No. 941892.
9.
Nagao
,
M.
,
Kaneko
,
T.
,
Omata
,
T.
,
Iwamoto
,
S. I.
,
Ohmori
,
H.
, and
Matsuno
,
S.
,
1995
, “Mechanism of Combustion Chamber Deposit Interference and Effects of Gasoline Additives on CCD Formation,” International Congress & Exposition, SAE Technical Paper No. 950741.
10.
Lepperhoff
,
G.
, and
Houben
,
M.
,
1993
, “Mechanisms of Deposit Formation in Internal Combustion Engines and Heat Exchangers,” SAE Technical Paper Series, Paper No. 931032.
11.
Price
,
R. A.
,
Spink
,
C. D.
, and
Morley
,
C. J.
,
1997
, “Prediction of Combustion Chamber Deposit Growth in SI Engines,”SAE Technical Paper No. 972835, pp.
846
862
.
12.
Shu
,
G.
,
Dong
,
L.
, and
Liang
,
X.
,
2012
, “
A Review of Experimental Studies on Deposits in the Combustion Chambers of Internal Combustion Engines
,”
Int. J. Engine Res.
,
13
(
4
), pp.
357
369
.
13.
Güralp
,
O.
,
Najt
,
P.
, and
Filipi
,
Z. S.
,
2013
, “
Method for Determining Instantaneous Temperature at the Surface of Combustion Chamber Deposits in an HCCI Engine
,”
ASME J. Eng. Gas Turbines Power
,
135
(
8
), p.
081501
.
14.
Hoffman
,
M.
, and
Filipi
,
Z.
,
2015
, “Influence of Directly Injected Gasoline and Porosity Fraction on the Thermal Properties of HCCI Combustion Chamber Deposits,” SAE Technical Paper No. 2015-24-2449.
15.
Kouame
,
S.-D. B.
,
Vander Wal
,
R. L.
, and
Perez
,
J.
,
2016
, “
Investigation of Subsequent Deposit Growth on Pre-Existing Lubricant Deposits: A Substitutional Growth Model
,”
Lubr. Sci.
,
28
(
5
), pp.
267
280
.
16.
Suryantoro
,
M. T.
,
Sugiarto
,
B.
, and
Mulyadi
,
F.
,
2016
, “
Growth and Characterization of Deposits in the Combustion Chamber of a Diesel Engine Fueled With B50 and Indonesian Biodiesel Fuel (IBF)
,”
Biofuel Res. J.
,
3
(
4
), pp.
521
527
.
17.
Appel
,
D.
,
Hagen
,
F. P.
,
Wagner
,
U.
,
Koch
,
T.
,
Bockhorn
,
H.
, and
Trimis
,
D.
,
2021
, “
Influence of Low Ambient Temperatures on the Exhaust Gas and Deposit Composition of Gasoline Engines
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082306
.
18.
Kalghatgi
,
G.
,
1997
, “Fuel and Additive Effects on the Rates of Growth of Combustion Chamber Deposits in a Spark Ignition Engine,” International Fuels & Lubricants Meeting & Exposition, SAE Technical Paper No. 972841.
19.
Price
,
R. A.
,
Wilkinson
,
J. P. T.
,
Jones
,
J.
, and
Morley
,
C. J.
,
1995
, “A Laboratory Simulation and Mechanism for the Fuel Dependence of SI Combustion Chamber Deposit Formation,” SAE Technical Paper Series, Paper No. 1364–1379.
20.
Kushwaha
,
G.
,
Saraswati
,
S.
, and
Paul
,
B.
,
2021
, “
Characterisation of Spark Plug Deposits of an SI Engine Fuelled With Gasoline-Ethanol Blends
,”
Int. J. Ambient Energy
,
43
(
1
), pp.
5309
5317
.
21.
Kushwaha
,
G.
,
Saraswati
,
S.
, and
Paul
,
B.
,
2022
, “
Effect of Lubricating Oil on the Spark Plug Deposit of Gasoline Engine
,” Proceedings of the 4th International Conference on Energy and Power (ICEP-2022) Held at Military Institute of Science & Technology (MIST), in Association with the Australian Society of Energy and Power (ASEP)
Dhaka, Bangladesh
,
Dec. 11–13
, p. 25.
22.
Nikanjam
,
M.
, and
Boom
,
R.
,
1996
, “
The Effects of Fuels and Engines on Intake Valve and Combustion Chamber Deposits
,”
SAE Trans., Int. J. Fuels Lubr.
,
105
(
4
), pp.
1752
1766
. https://www.jstor.org/stable/44729174
23.
Richardson
,
C. E.
,
Fischer
,
J. L.
, and
Pawczuk
,
G.
,
1996
, “Evaluation of the Effect of Fuel Composition and Gasoline Additives on Combustion Chamber Deposits,” SAE Technical Paper No. 962012.
24.
Kalghatgi
,
G. T.
,
1996
, “Combustion Chamber Deposits and Knock in a Spark Ignition Engine—Some Additive and Fuel Effects,” SAE Technical Paper No. 962009.
25.
Arsie
,
I.
,
Pianese
,
C.
, and
Rizzo
,
G.
,
1998
, “Models for the Prediction of Performance and Emissions in a Spark Ignition Engine—A Sequentially Structured Approach,” SAE Technical Paper No. 980779.
26.
Ishiguro
,
H.
,
Kanao
,
K.
,
Okabe
,
S.
, and
Hashizume
,
K.
,
2005
, “Super Carbon Fouling Resistive Small Size Spark Plug,” SAE Technical Paper No. 2005-01-1158.
27.
Kim
,
J.
,
Gururajan
,
V.
,
Scarcelli
,
R.
,
Biswas
,
S.
, and
Ekoto
,
I.
,
2022
, “
Modeling Nanosecond-Pulsed Spark Discharge and Flame Kernel Evolution
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022305
.
28.
Burth
,
M.
,
Verghese
,
G. C.
, and
Velez-Reyes
,
M.
,
1999
, “
Subset Selection for Improved Parameter Estimation in On-Line Identification of a Synchronous Generator
,”
IEEE Trans. Power Syst.
,
14
(
1
), pp.
218
225
.
29.
Saraswati
,
S.
, and
Chand
,
S.
,
2009
, “
Identification of One-Zone Heat Release Parameters for SI Engine
,”
Int. J. Model., Identif. Control
,
6
(
4
), pp.
287
287
.
30.
Barman
,
B. N.
,
2002
, “
Behavioral Differences Between Group I and Group II Base Oils During Thermo-Oxidative Degradation
,”
Tribol. Int.
,
35
(
1
), pp.
15
26
.
31.
Overbye
,
V. D.
,
Bennethum
,
J. E.
,
Uyehara
,
O. A.
, and
Myers
,
P. S.
,
1961
, “Unsteady Heat Transfer in Engines,” SAE Technical Paper No. 610041.
32.
Anderson
,
C. L.
,
1980
, “
An In-Situ Technique for Determining the Thermal Properties of Combustion-Chamber Deposits—ProQuest
,”
PhD dissertation
, https://www.proquest.com/openview/42c6012ba8d556002c7a327c8aa8ad82/1?pq-origsite = gscholar&cbl = 18750&diss = y
33.
Hayes
,
T. K.
,
White
,
R. A.
, and
Peters
,
J. E.
,
1992
, “The In-Situ Measurement of the Thermal Diffusivity of Combustion Chamber Deposits in Spark Ignition Engines,” SAE Technical Paper No. 920513.
34.
Harder
,
R. F.
, and
Anderson
,
C. S.
,
1988
, “
Investigation of Combustion-Chamber Deposit Thermal Behavior Utilizing Optical Radiation Measurements in a Fired Engine
,”
Combust. Sci. Technol.
,
60
(
4-6
), pp.
423
439
.
35.
Nishiwaki
,
K.
, and
Hafnan
,
M.
,
2000
, “The Determination of Thermal Properties of Engine Combustion Chamber Deposits,” SAE Technical Paper No. 2000-01-1215.
36.
Weidenlener
,
A.
,
Pfeil
,
J.
,
Kubach
,
H.
,
Koch
,
T.
,
Forooghi
,
P.
,
Frohnapfel
,
B.
, and
Magagnato
,
F.
,
2018
, “
The Influence of Operating Conditions on Combustion Chamber Deposit Surface Structure, Deposit Thickness and Thermal Properties
,”
Automot. Engine Technol
,
3
(
3-4
), pp.
111
127
.
37.
Brown
,
A. S.
,
Watt
,
W.
,
Powell
,
R.
, and
Tye
,
R. P.
,
1956
, “
The Thermal and Electrical Conductivities of Deposited Carbon
,”
Br. J. Appl. Phys.
,
7
(
2
), pp.
73
76
.
38.
Kameoka
,
A.
, and
Tsuchiya
,
K.
,
2006
, “Influence of Ferrocene on Engine and Vehicle Performance,” SAE Technical Paper No. 2006-01-3448.
You do not currently have access to this content.