Abstract

The rheology of a packer fluid (PF) is the most crucial aspect prompting the efficacious well completion effectiveness. In the drilling industry, a high-density, solid-free, low viscosity, and alkaline pH packer fluid is a big advancement and requirement. Here, we develop a magnesium bromide as an effective solid-free, high-density packer fluid (HDPF) for oilfield applications. We believe that investigating the rheological parameters such as shear stress, yield point, plastic and apparent viscosity, and gel strength 10 s and 10 min at a varying temperature of 84–192 °F is essential for optimizing the rheological performance. In order to enhance the completion efficiency, our work is more focused on overcoming the rheological and density limitations of existing traditional packer fluid. Our results show that the packer fluid has a low value of plastic viscosity (1.95–7.05 cP) and also exhibits a high density of 13.41 lb/gal, a specific gravity of 1.61. We have reported the pH at the alkaline region (pH 7.14) with solid-free. Here, we have investigated the Bingham plastic rheological model and Herschel Bulkley model parameters with experimental rheological data, and it is adaptive to novel packer fluid to predict the rheological parameters. Conspicuously, the rheological models, along with data analysis, have enormous possibilities in envisaging real-time quantification of shear stress and viscosity to enable the user to monitor and evaluate a suitable packer fluid in oilfield applications.

References

1.
Smith
,
C.
, and
Skibinski
,
D.
,
2007
, “
Packer Fluid
,” U.S. Patent No. 7,219,735,
Washington, DC
.
2.
Schlumberger Oil Field Glossary
,
2022
, “
Schlumberger
,” https://glossary.Oilfield.slb.com/Terms/p/packer_fluid.aspx, Accessed May 1, 2022.
3.
Xu
,
P.
,
Tao
,
Z.
, and
Wang
,
Z.
,
2018
, “
Corrosion-Resistant Systems of Formate Packer Fluid for G3/N80/TP110SS Pipes at High Temperature, High Pressure and High H2S/CO2 Ratios
,”
R. Soc. Open Sci.
,
5
(
7
), p.
180405
.
4.
Ashford
,
J. D.
,
Blount
,
C. G.
,
Marcou
,
J. A.
,
Ralph
,
J. M.
, and
Skaalure
,
E. W.
,
1990
, “
Annular Packer Fluids for Paraffin Control: Model Study and Successful Field Application
,”
SPE Prod. Eng.
,
5
(
4
), pp.
351
355
.
5.
Li
,
C.
,
Guan
,
Z.
,
Zhang
,
B.
,
Wang
,
Q.
,
Xie
,
H.
,
Yan
,
Y.
, and
Han
,
C.
,
2021
, “
Failure and Mitigation Study of Packer in the Deepwater HTHP Gas Well Considering the Temperature-Pressure Effect During Well Completion Test
,”
Case Stud. Therm. Eng.
,
26
, p.
101021
.
6.
Javora
,
P. H.
,
Pearcy
,
R. G.
,
Wang
,
X.
,
Stevens
,
R. F.
, and
Qu
,
Q.
,
2008
, “
A Decade of Experience: the Water Based Thermal Insulating Packer Fluid
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Denver, CO
,
Sept. 21
.
7.
Jiang
,
G.
,
Sun
,
J.
,
He
,
Y.
,
Cui
,
K.
,
Dong
,
T.
,
Yang
,
L.
,
Yang
,
X.
, and
Wang
,
X.
,
2021
, “
Novel Water-Based Drilling and Completion Fluid Technology to Improve Wellbore Quality During Drilling and Protect Unconventional Reservoirs
,”
Engineering.
8.
Ezzat
,
A. M.
,
Miller
,
J. J.
,
Ezell
,
R.
, and
Perez
,
G. P.
,
2007
, “
High-Performance Water-Based Insulating Packer Fluids
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Anaheim, CA
,
Nov. 11
.
9.
Ezzat
,
A. M.
,
Augsburger
,
J. J.
, and
Tillis
,
W. J.
,
1988
, “
Solids-Free, High-Density Brines for Packer-Fluid Applications
,”
J. Pet. Technol.
,
40
(
4
), pp.
491
498
.
10.
Pandya
,
N.
,
Kalgaonkar
,
R.
, and
Dave
,
A.
,
2014
, “
Environmentally Acceptable Swell Packer Fluid for Unconventional Reservoirs With High-Temperature Applications
,”
Proceedings of the SPE Saudi Arabia Section Technical Symposium and Exhibition
,
Al-Khobar, Saudi Arabia
,
Apr. 21
.
11.
Qamar
,
S. Z.
,
Pervez
,
T.
,
Akhtar
,
M.
, and
Kharusi
,
M. A.
,
2021
, “
Long-Term Performance Assessment of Swell Packers Under Different Oilfield Conditions
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
063006
.
12.
Ugarte
,
E. R.
, and
Salehi
,
S.
,
2022
, “
A Review on Well Integrity Issues for Underground Hydrogen Storage
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
042001
.
13.
Dubberley
,
S.
, and
Magill
,
S. A.
,
2020
, “
Technical Review of Solids Free Brine-Based Drilling Fluids
,”
Proceedings of the American Association of Drilling Engineers Technical Conference and Exhibition on Fluids
,
Houston, TX
,
Apr. 14
.
14.
Hossain
,
M. E.
, and
Al-Majed
,
A. A.
,
2015
,
Fundamentals of Sustainable Drilling Engineering
,
John Wiley & Sons
,
Hoboken, NJ
.
15.
Lee
,
J.
,
Shadravan
,
A.
, and
Young
,
S.
,
2012
, “
Rheological Properties of Invert Emulsion Drilling Fluid Under Extreme HPHT Conditions
,”
Proceedings of the IADC/SPE Drilling Conference and Exhibition
,
San Diego, CA
,
Mar. 6
.
16.
Ali
,
J. A.
,
Hamadamin
,
A. B.
,
Ahmed
,
S. M.
,
Mahmood
,
B. S.
,
Sajadi
,
S. M.
, and
Manshad
,
A. K.
,
2022
, “
Synergistic Effect of Nanoinhibitive Drilling Fluid on the Shale Swelling Performance at High Temperature and High Pressure
,”
Energy Fuels
,
36
(
4
), pp.
1996
2006
.
17.
Al-Bagoury
,
M.
, and
Steele
,
C.
,
2016
, “
Liquid Weight Material for Drilling & Completion Fluids
,”
Proceedings of the SPE/IADC Middle East Drilling Technology Conference and Exhibition
,
Abu Dhabi, UAE
,
Jan. 26
.
18.
Champeau
,
M.
,
Wei
,
X.
,
Jackson
,
P.
,
Sui
,
C.
,
Zhang
,
J.
, and
Albert
,
O.
,
2019
, “
Alternative High Density Brines
,”
Proceedings of the SPE Offshore Europe Conference and Exhibition
,
Aberdeen, UK
,
Sept. 3
.
19.
Javad
,
M. K.
, and
Ehsan
,
K.
,
2021
, “
A Novel Packer Fluid for Completing HP/HT Oil and Gas Wells
,”
J. Pet. Sci. Eng.
,
203
, p.
108538
.
20.
Singh
,
R.
,
Sharma
,
R.
, and
Rao
,
G. R.
,
2022
, “
Aging Effects on the Rheological Properties of Novel Magnesium Bromide Hexahydrate-Based Completion Fluids for Oil and Gas Reservoirs
,”
Arabian J. Sci. Eng.
21.
Tariq
,
Z.
,
Kamal
,
M. S.
,
Mahmoud
,
M.
,
Hussain
,
S. M.
,
Abdulraheem
,
A.
, and
Zhou
,
X.
,
2020
, “
Polyoxyethylene Quaternary Ammonium Gemini Surfactants as a Completion Fluid Additive to Mitigate Formation Damage
,”
SPE Drill. Completion
,
35
(
4
), pp.
696
706
.
22.
Jia
,
H.
,
Hu
,
Y. X.
,
Zhao
,
S. J.
, and
Zhao
,
J. Z.
,
2019
, “
The Feasibility for Potassium-Based Phosphate Brines to Serve as High-Density Solid-Free Well-Completion Fluids in High-Temperature/High-Pressure Formations
,”
SPE J.
,
24
(
5
), pp.
2033
2046
.
23.
Davidson
,
M. R.
,
Rosa
,
S.
,
Andrew
,
D.
,
Moctesuma
,
R. T.
,
Mahir
,
D. A.
,
Stephen
,
M.
, and
Jennifer
,
R.
,
2017
, “
High-Density Completion Fluid
,” United States Patent Application No. US 201701 45284A1,
Houston, TX
.
24.
Sangka
,
N. B.
, and
Hendra
,
B.
,
2016
, “
Application of Nitrate Based Fluid as a Completion Fluid
,”
Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference
,
Abu Dhabi, UAE
,
Nov. 7
.
25.
Zhou
,
H.
,
Deville
,
J. P.
, and
Davis
,
C. L.
,
2015
, “
Novel Thermally Stable High-Density Brine-Based Drill-In Fluids for HP/HT Applications
,”
Proceedings of the SPE Middle East Oil & Gas Show and Conference
,
Manama, Bahrain
,
Mar. 8
.
26.
Howard
,
S.
, and
Chrenowski
,
M.
,
2014
, “
Corrosion in Formate Brines-20 Years of Laboratory Testing and Field Experience
,”
Proceedings of the Offshore Technology Conference-Asia
,
Kuala Lumpur, Malaysia
,
Mar. 25
, OnePetro.
27.
Shadravan
,
A.
, and
Amani
,
M.
,
2012
, “
HPHT 101—What Every Engineer or Geoscientist Should Know About High Pressure High Temperature Wells
,”
Proceedings of the SPE Kuwait International Petroleum Conference and Exhibition
,
Kuwait City, Kuwait
,
Dec. 10
.
28.
API Recommended Practice 13B-1
,
2003
, “
Recommended Practice for Field Testing Water-Based Drilling Fluids
,”
American Petroleum Institute
,
Washington, DC
.
29.
Mohamed
,
I. M.
,
Panchal
,
Y.
,
Mounir
,
N.
,
Woolsey
,
G.
,
Abou-Sayed
,
O. A.
, and
Abou-Sayed
,
A. S.
,
2021
, “
Evaluation of Annulus Pressure Buildup During Injection Operations
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
073002
.
30.
Madadizadeh
,
A.
,
Sadeghein
,
A.
, and
Riahi
,
S.
,
2022
, “
A Comparison of Different Nanoparticles’ Effect on Fine Migration by Low Salinity Water Injection for Oil Recovery: Introducing an Optimum Condition
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
013005
.
31.
Razzaq
,
W.
,
Elkatatny
,
S.
,
Gamal
,
H.
, and
Samsuri
,
A.
,
2022
, “
The Utilization of Steelmaking Industrial Waste of Silicomanganese Fume as Filtration Loss Control in Drilling Fluid Application
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
023004
.
32.
Ofei
,
T. N.
,
Lund
,
B.
,
Saasen
,
A.
, and
Sangesland
,
S.
,
2022
, “
The Effect of Oil–Water Ratio on Rheological Properties and Sag Stability of Oil-Based Drilling Fluids
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
073008
.
33.
Ahmed
,
A.
,
Basfar
,
S.
, and
Elkatatny
,
S.
,
2022
, “
Sagging Prevention for Hematite-Based Invert Emulsion Mud
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
073003
.
34.
Lide
,
D. R.
,
1998
,
Handbook of Chemistry and Physics
, 87th ed.,
CRC Press
,
Boca Raton, FL
, pp.
4
67
.
35.
Zhao
,
J.
,
Xi
,
X.
,
Dong
,
H.
,
Wang
,
Z.
, and
Zhuo
,
Z.
,
2022
, “
Rheo-Microscopy in Situ Synchronous Measurement of Shearing Thinning Behaviors of Waxy Crude Oil
,”
Fuel
,
323
, p.
124427
.
36.
Kelessidis
,
V. C.
,
Tsamantaki
,
C.
,
Pasadakis
,
N.
,
Repouskou
,
E.
, and
Hamilaki
,
E.
,
2007
, “
Permeability, Porosity and Surface Characteristics of Filter Cakes From Water– Bentonite Suspensions
,”
WIT Trans. Eng. Sci.
,
56
, pp.
173
182
.
37.
Gowida
,
A.
,
Elkatatny
,
S.
,
Abdelgawad
,
K.
, and
Gajbhiye
,
R.
,
2020
, “
Newly Developed Correlations to Predict the Rheological Parameters of High-Bentonite Drilling Fluid Using Neural Networks
,”
Sensors
,
20
(
10
), p.
2787
.
38.
Pan
,
Y.
, and
Wang
,
J. Y.
,
2022
, “
Analysis of Compositions of Flowback Water From Marcellus Shale Wells by Utilizing Data Mining Techniques
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
013004
.
39.
Sakthipriya
,
N.
,
Doble
,
M.
, and
Sangwai
,
J. S.
,
2022
, “
Performance of Thermophilic Strain on the Reduction of Viscosity of Crude Oil Under High Pressure and High Temperature Conditions: Experiments and Modeling
,”
J. Pet. Sci. Eng.
,
210
, p.
110016
.
40.
Vryzas
,
Z.
,
Kelessidis
,
V. C.
,
Nalbandian
,
L.
, and
Zaspalis
,
V.
,
2018
, “
Can Titanium and Copper Oxide Commercial Nanoparticles Be Used for HP/HT Applications? A Comparison With the Very Well Performing Fe3O4 NP
,”
Proceedings of the Offshore Mechanics and Arctic Engineering
,
Madrid, Spain
,
Sept. 25
, p. V008T11A048, 51296.
41.
Chandrasekaran
,
S.
, and
Kumar
,
G. S.
,
2020
, “
Drilling Efficiency Improvement and Rate of Penetration Optimization by Machine Learning and Data Analytics
,”
Int. J. Math. Eng. Manag. Sci.
,
5
(
3
), pp.
381
394
.
42.
Mrinal
,
K. R.
, and
Samad
,
A.
,
2017
, “
Leakage Flow Correlation of a Progressive Cavity Pump Delivering Shear Thinning Non-Newtonian Fluids
,”
Int. J. Oil Gas Coal Technol.
,
16
(
2
), pp.
166
186
.
43.
Ahmed
,
S.
, and
Salehi
,
S.
,
2021
, “
Failure Mechanisms of the Wellbore Mechanical Barrier Systems: Implications for Well Integrity
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
073007
.
44.
Caenn
,
R.
,
Darley
,
H. C.
, and
Gray
,
G. R.
,
2011
,
Composition and Properties of Drilling and Completion Fluids
, 6th ed.,
Gulf Professional Publishing
,
Oxford, UK
.
45.
Spies
,
R. J.
,
Himmatramka
,
A. K.
,
Smith
,
J. R.
, and
Thomas
,
D. C.
,
1983
, “
Field Experience Utilizing High-Density Brines as Completion Fluids
,”
J. Pet. Technol.
,
35
(
5
), pp.
881
888
.
46.
TETRA Technologies Inc.
, “
Engineered Solution Guide for Clear Brine Fluids and Filtration
,” 2nd ed., Chapters 2, 5. https://tetratec.com/resources/engineered-solutions-guide, Accessed March 20, 2022.
47.
Arthur
,
G. M.
,
2017
, “
High Density, Low TCT Divalent Brines and Uses Thereof
,” International Publication Number WO2017165762A1.
48.
Ibeh
,
C.
,
Schubert
,
J.
, and
Teodoriu
,
C.
,
2008
, “
Investigation on the Effect of Ultra-High Pressure and Temperature on the Rheological Properties of Oil-Based Drilling Fluids
,”
Proceedings of the AADE Conference and Exhibition
,
Houston, TX
,
Apr. 8
.
49.
Amani
,
M.
, and
Hassiba
,
K. J.
,
2012
, “
Salinity Effect on the Rheological Properties of Water Based Mud Under High Pressures and High Temperatures of Deep Wells
,”
Proceedings of the SPE Kuwait International Petroleum Conference and Exhibition
,
Kuwait
,
Dec. 10
.
50.
Kelessidis
,
V. C.
, and
Maglione
,
R.
,
2008
, “
Yield Stress of Water-Bentonite Dispersions
,”
Colloids Surf., A
,
318
(
1–3
), pp.
217
226
.
51.
Masikewich
,
J.
, and
Bennion
,
D. B.
,
1999
, “
Fluid Design to Meet Reservoir Issues—A Process
,”
J. Can. Pet. Technol.
,
38
(
5
), pp.
61
71
.
52.
Elsharafi
,
M. O.
, and
Bai
,
B.
,
2016
, “
Influence of Strong Preformed Particle Gels on Low Permeable Formations in Mature Reservoirs
,”
Pet. Sci.
,
13
(
1
), pp.
77
90
.
53.
Wang
,
Z.
,
Bai
,
Y.
,
Zhang
,
H.
, and
Liu
,
Y.
,
2019
, “
Investigation on Gelation Nucleation Kinetics of Waxy Crude Oil Emulsions by Their Thermal Behavior
,”
J. Pet. Sci. Eng.
,
181
, p.
106230
.
54.
Ismail
,
A. R.
,
Mohd
,
N. M.
,
Basir
,
N. F.
,
Oseh
,
J. O.
,
Ismail
,
I.
, and
Blkoor
,
S. O.
,
2020
, “
Improvement of Rheological and Filtration Characteristics of Water-Based Drilling Fluids Using Naturally Derived Henna Leaf and Hibiscus Leaf Extracts
,”
J. Pet. Explor. Prod. Technol.
,
10
(
8
), pp.
3541
3556
.
55.
Parizad
,
A.
, and
Shahbazi
,
K.
,
2016
, “
Experimental Investigation of the Effects of SnO2 Nanoparticles and KCl Salt on a Water Base Drilling Fluid Properties
,”
Can. J. Chem. Eng.
,
94
(
10
), pp.
1924
1938
.
You do not currently have access to this content.