Abstract

Jet orifice diameter directly impacts the combustion process of the pre-chamber jet ignition (PJI) engine and the optimized diameter is varied with the fuel properties. However, research on the optimization of the jet orifice diameter based on aviation kerosene fuel has not been reported. So, this paper investigates the effect of orifice diameter on combustion, pressure oscillation, and performance based on a kerosene-fueled single-cylinder test engine. Two pressure sensors are respectively fitted in the main combustion chamber and the pre-chamber, which can capture the pressure change process and pressure oscillations phenomenon at the two positions, respectively. The result demonstrates that the throttling of the jet orifice leads to a significant three-stage pressure imbalance between the combustion chambers. With the reduction of the orifice diameter, the combustion acceleration of PJI is enhanced, resulting in an advanced combustion phase, improved combustion stability, and enhanced knock. The time-frequency analysis proves that the pressure oscillation propagation to the pre-chamber is frequency-selective and related to the orifice diameter. By matching the pre-chamber Helmholtz resonance frequency with the main chamber resonance frequency, strong pressure oscillations can be excited in the pre-chamber. Meanwhile, the pressure oscillation energy can be absorbed by the pre-chamber, which may help reduce the engine's combustion noise. Moreover, the PJI with an orifice diameter between 2 mm and 4 mm can improve the combustion stability with the ISFC reduced by 4.7–5.6%, and the IMEP increased by 1.2–2.6%.

References

1.
Adamski
,
M.
,
2017
, “
Analysis of Propulsion Systems of Unmanned Aerial Vehicles
,”
J. Mar. Eng. Technol.
,
16
(
4
), pp.
291
297
.
2.
Raviteja
,
S.
,
Ramakrishna
,
P. A.
, and
Ramesh
,
A.
,
2022
, “
Performance Enhancement Using Different Nitromethane Blends in a Small Two-Stroke Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032303
.
3.
Wang
,
C. Y.
,
Zhang
,
F.
,
Wang
,
E.
,
Yu
,
C.
,
Gao
,
H.
,
Liu
,
B.
,
Zhao
,
Z.
, and
Zhao
,
C.
,
2019
, “
Experimental Study on Knock Suppression of Spark-Ignition Engine Fuelled With Kerosene Via Water Injection
,”
Appl. Energy
,
242
, pp.
248
259
.
4.
Liu
,
R.
,
Huang
,
K
,
Qiao
,
Y
,
Wang
,
Z
, and
Ji
,
H
,
2022
, “
Combustion Performance Investigation of Aviation Kerosene (RP-3) on a Compression Ignition Diesel Engine Under Various Loads
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032308
.
5.
Ning
,
L.
,
Duan
,
Q.
,
Wei
,
Y.
,
Zhang
,
X.
,
Yang
,
B.
, and
Zeng
,
K.
,
2020
, “
Experimental Investigation on Combustion and Emissions of a Two-Stroke DISI Engine Fueled With Aviation Kerosene at Various Compression Ratios
,”
Fuel
,
259
, p.
116224
.
6.
Ning
,
L.
,
Duan
,
Q.
,
Wei
,
Y.
,
Zhang
,
X.
,
Yu
,
K.
,
Yang
,
B.
, and
Zeng
,
K.
,
2019
, “
Effects of Injection Timing and Compression Ratio on the Combustion Performance and Emissions of a Two-Stroke DISI Engine Fuelled With Aviation Kerosene
,”
Appl. Therm. Eng.
,
161
, p.
114124
.
7.
Liu
,
F.
,
Zhou
,
L.
,
Hua
,
J.
,
Liu
,
C.
, and
Wei
,
H.
,
2021
, “
Effects of Pre-Chamber Jet Ignition on Knock and Combustion Characteristics in a Spark Ignition Engine Fueled With Kerosene
,”
Fuel
,
293
, p.
120278
.
8.
Turner
,
J.
,
Popplewell
,
A.
,
Patel
,
R.
,
Johnson
,
T. R.
,
Darnton
,
N. J.
,
Richardson
,
S.
,
Bredda
,
S. W.
, et al
,
2014
, “
Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing
,”
SAE Int. J. Eng.
,
7
(
1
), pp.
387
417
.
9.
Gehmlich
,
R.
,
Mueller
,
C. J.
,
Ruth
,
D. J.
,
Nilsen
,
C. W.
,
Skeen
,
S. A.
, and
Manin
,
J.
,
2018
, “
Using Ducted Fuel Injection to Attenuate or Prevent Soot Formation in Mixing-Controlled Combustion Strategies for Engine Applications
,”
Appl. Energy
,
226
, pp.
1169
1186
.
10.
Belgiorno
,
G.
,
Dimitrakopoulos
,
N.
,
Di Blasio
,
G.
,
Di Blasio
,
G.
,
Beatrice
,
C.
,
Tuner
,
M.
, and
Tunestal
,
P.
,
2017
, “
Parametric Analysis of the Effect of Pilot quantity, Combustion Phasing and EGR on Efficiencies of a Gasoline PPC Light-Duty Engine
,”
SAE Technical Paper
.
11.
Toulson
,
E.
,
Schock
,
H. J.
, and
Attard
,
W. P.
,
2010
,
A Review of Pre-Chamber Initiated Jet Ignition Combustion Systems, SAE International
.
12.
Hua
,
J.
,
Zhou
,
L.
,
Gao
,
Q.
, and
Feng
,
Z.
,
2020
, “
Effects on Cycle-to-Cycle Variations and Knocking Combustion of Turbulent Jet Ignition (TJI) With a Small Volume Pre-Chamber
,”
SAE Technical Paper
.
13.
Wang
,
L.
,
Zhao
,
Z.
,
Yu
,
C.
, and
Cui
,
H.
,
2022
, “
Experimental Study of Aviation Kerosene Engine With PJI System
,”
Energy
,
248
, p.
123590
.
14.
Allison
,
P. M.
,
de Oliveira
,
M.
,
Giusti
,
A.
, and
Mastorakos
,
E.
,
2018
, “
Pre-Chamber Ignition Mechanism: Experiments and Simulations on Turbulent Jet Flame Structure
,”
Fuel
,
230
, pp.
274
281
.
15.
Tian
,
J. P.
,
Cui
,
Z. C.
,
Ren
,
Z. Y.
,
Tian
,
H.
, and
Long
,
W. Q.
,
2020
, “
Experimental Study on Jet Ignition and Combustion Processes of Natural Gas
,”
Fuel
,
262
, p.
116467
.
16.
Desantes
,
J. M.
,
López
,
J. J.
,
Novella
,
R.
, and
Antolini
,
J.
,
2021
, “
Pre-Chamber Ignition Systems: A Methodological Proposal to Reproduce a Reference Case in a Simplified Experimental Facility for Fundamental Studies
,”
Int. J. Eng. Res.
,
22
(
11
), pp.
3358
3371
.
17.
Biswas
,
S.
,
Tanvir
,
S.
,
Wang
,
H.
, and
Qiao
,
L.
,
2016
, “
On Ignition Mechanisms of Premixed CH4/Air and H2/Air Using a Hot Turbulent Jet Generated by Pre-Chamber Combustion
,”
Appl. Therm. Eng.
,
106
, pp.
925
937
.
18.
Mastorakos
,
E.
,
Allison
,
P.
,
Giusti
,
A.
,
De Oliveira
,
P.
,
Benekos
,
S.
,
Wright
,
Y.
,
Frouzakis
,
C.
, and
Boulouchos
,
K.
,
2017
, “
Fundamental Aspects of Jet Ignition for Natural Gas Engines
,”
SAE Int. J. Eng.
,
10
(
5
), pp.
2429
2438
.
19.
Liu
,
P.
,
Zhong
,
L.
,
Zhou
,
L.
, and
Wei
,
H.
,
2021
, “
The Ignition Characteristics of the Pre-Chamber Turbulent Jet Ignition of the Hydrogen and Methane Based on Different Orifices
,”
Int. J. Hydrogen Energy
,
46
(
74
), pp.
37083
37097
.
20.
Cai
,
J.
,
Kai
,
S.
, and
Feng
,
Y
,,
2021
, “
Turbulent Jet Ignition of Ultra-Lean Methane/Air Mixture Under Engine-Like Condition
,”
Phys. Fluids
,
33
(
11
), p.
115121
.
21.
Keum
,
S.
, and
Kuo
,
T.-W.
,
2019
, “
Damköhler Number Analysis on the Effect of Ozone on Autoignition and Flame Propagation in Internal Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112205
.
22.
Li
,
F.
,
Zhao
,
Z.
,
Wang
,
B.
, and
Wang
,
Z.
,
2021
, “
Experimental Study of Pre-Chamber Jet Ignition in a Rapid Compression Machine and Single-Cylinder Natural Gas Engine
,”
Int. J. Eng. Res.
,
22
(
4
), pp.
1342
1356
.
23.
Zhou
,
L.
,
Hua
,
J.
,
Liu
,
F.
,
Liu
,
F.
,
Feng
,
D.
, and
Wei
,
H.
,
2018
, “
Effect of Internal Exhaust Gas Recirculation on the Combustion Characteristics of Gasoline Compression Ignition Engine Under Low to Idle Conditions
,”
Energy
,
164
, pp.
306
315
.
24.
Acar
,
M. S.
, and
Arslan
,
O.
,
2018
, “
Performance Analysis of a New Hybrid Cooling-Drying System
,”
Environ. Prog. Sustain. Energy
,
37
(
5
), pp.
1808
1828
.
25.
Wu
,
Z.
,
Mao
,
Y.
,
Raza
,
M.
,
Zhu
,
J.
,
Feng
,
Y.
,
Wang
,
S.
,
Qian
,
Y.
,
Yu
,
L.
, and
Lu
,
X.
,
2019
, “
Surrogate Fuels for RP-3 Kerosene Formulated by Emulating Molecular Structures, Functional Groups, Physical and Chemical Properties
,”
Combust. Flame
,
208
, pp.
388
401
.
26.
Wei
,
H.
,
Hua
,
J.
,
Pan
,
M.
,
Feng
,
D.
,
Zhou
,
L.
, and
Pan
,
J.
,
2018
, “
Experimental Investigation on Knocking Combustion Characteristics of Gasoline Compression Ignition Engine
,”
Energy
,
143
, pp.
624
633
.
27.
Yeliana
,
Cooney
,
C.
,
Worm
,
J.
, and
Naber
,
J. D.
,
2008
, “
The Calculation of Mass Fraction Burn of Ethanol-Gasoline Blended Fuels Using Single and Two-Zone Models
,”
SAE World Congress
,
Detroit, MI
,
Apr. 14–17
.
28.
Zhou
,
L.
,
Shao
,
A.
,
Hua
,
J.
,
Wei
,
H.
, and
Feng
,
D.
,
2018
, “
Effect of Retarded Injection Timing on Knock Resistance and Cycle to Cycle Variation in Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072202
.
29.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill, New York
.
30.
Sharma
,
P.
, and
Sharma
,
A. K.
,
2021
, “
Statistical and Continuous Wavelet Transformation-Based Analysis of Combustion Instabilities in a Biodiesel-Fueled Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032304
.
31.
Zhou
,
L.
,
Song
,
Y.
,
Hua
,
J.
,
Liu
,
F.
,
Liu
,
Z.
, and
Wei
,
H.
,
2022
, “
Effects of Different Hole Structures of Pre-Chamber With Turbulent Jet Ignition on the Flame Propagation and Lean Combustion Performance of a Single-Cylinder Engine
,”
Fuel
,
308
, p.
121902
.
32.
Validi
,
A.
,
Schock
,
H.
, and
Jaberi
,
F.
,
2017
, “
Turbulent Jet Ignition Assisted Combustion in a Rapid Compression Machine
,”
Combust. Flame
,
186
, pp.
65
82
.
33.
Zhou
,
L.
,
Zhong
,
L.
,
Zhao
,
J.
,
Gao
,
D.
, and
Wei
,
H.
,
2018
, “
Flame Propagation and Combustion Modes in End-Gas Region of Confined Space
,”
Combust. Flame
,
190
, pp.
216
223
.
34.
Xiaofeng
,
G.
,
Stone
,
R.
, and
Hudson
,
C.
,
1993
,
The Detection and Quantification of Knock in Spark Ignition Engines, SAE International
.
35.
He
,
X.
,
Qi
,
Y.
,
Wang
,
Z.
,
Wang
,
J.
,
Shuai
,
S.
, and
Tao
,
L.
,
2015
, “
Visualization of the Mode Shapes of Pressure Oscillation in a Cylindrical Cavity
,”
Combust. Sci. Technol.
,
187
(
10
), pp.
1610
1619
.
36.
Beattie
,
C. L.
,
1958
, “
Table of First 700 Zeros of Bessel Functions—Jl (x) and J'l (x)
,”
Bell Syst. Tech. J.
,
37
(
3
), pp.
689
697
.
37.
Blunsdon
,
C. A.
, and
Dent
,
J. C.
,
1994
, “
The Simulation of Autoignition and Knock in a Spark Ignition Engine With Disk Geometry
,”
SAE Technical Paper
103
, pp.
853
877
.
38.
Wei
,
H.
,
Feng
,
D.
,
Pan
,
M.
,
Pan
,
J.
,
Rao
,
X.
, and
Gao
,
D.
,
2016
, “
Experimental Investigation on the Knocking Combustion Characteristics of n-Butanol Gasoline Blends in a DISI Engine
,”
Appl. Energy
,
175
, pp.
346
355
.
39.
Li
,
L.
,
Liu
,
Y.
,
Zhang
,
F.
, and
Sun
,
Z.
,
2017
, “
Several Explanations on the Theoretical Formula of Helmholtz Resonator
,”
Adv. Eng. Softw.
,
114
, pp.
361
371
.
40.
Woodhouse
,
J.
The Helmholtz Resonator, https://euphonics.org/4-2-1-the-helmholtz-resonator/
You do not currently have access to this content.