Abstract

Salt cavern solution mining is a complicated process of fluid dynamics and chemical dynamics, including salt boundary dissolution, cavern expansion, brine flow, and species transport. The reaction processes occur simultaneously and interact with each other. In this study, a multiphysical coupled model is established to evaluate the real-time three-dimensional salt cavern shape expansion, the velocity field, and the brine concentration distribution. Then, the predicted results are compared with the field data of a Jintan Gas Storage Well in China. The average relative deviations with the turbulent flow are 5.7% for outlet brine concentration and 4.0% for cavern volume. The results show that salt cavern can be divided into four regions, including the shock region, plume region, reflow region, and suction region. The results also indicate that the turbulent flow will stimulate the formation of the vortex, thus affecting the distribution of brine concentration. And, the brine concentration distribution primarily influences cavern corrosion. The results suggest that adjusting the inject velocity and the tube position can change the cavern construction rate and the cavern shape. Overall, these results have guiding significance for the design and engineering practice of salt cavern construction for energy storage.

References

1.
Oil and Gas Department of National Energy Administration
,
2020
, China Natural Gas Expansion Report, Petroleum Industry Press, pp.
1
5
.
2.
Zhang
,
J.
,
Tan
,
Y.
,
Zhang
,
T.
,
Yu
,
K.
,
Wang
,
X.
, and
Zhao
,
Q.
,
2020
, “
Natural Gas Market and Underground Gas Storage Expansion in China
,”
J. Energy Storage
,
29
, p.
101338
.
3.
Yang
,
C. H.
,
Wang
,
T. T.
,
Li
,
Y. P.
,
Yang
,
H. J.
,
Li
,
J. J.
,
Qu
,
D. A.
,
Xu
,
B. C.
,
Yang
,
Y.
, and
Daemen
,
J. J. K.
,
2015
, “
Feasibility Analysis of Using Abandoned Salt Caverns for Large-Scale Underground Energy Storage in China
,”
Appl. Energy
,
137
(1), pp.
467
481
.
4.
Nazary Moghadam
,
S.
,
Mirzabozorg
,
H.
, and
Noorzad
,
A.
,
2013
, “
Modeling Time-Dependent Behavior of Gas Caverns in Rock Salt Considering Creep, Dilatancy and Failure
,”
Tunnell. Underground Space Technol.
,
33
, pp.
171
185
.
5.
Ślizowski
,
J.
,
Lankof
,
L.
,
Urbańczyk
,
K.
, and
Serbin
,
K.
,
2017
, “
Potential Capacity of Gas Storage Caverns in Rock Salt Bedded Deposits in Poland
,”
J. Nat. Gas Sci. Eng.
,
43
, pp.
167
178
.
6.
Wei
,
L.
,
Jie
,
C.
,
Deyi
,
J.
,
Xilin
,
S.
,
Yinping
,
L.
,
Daemen
,
J. J. K.
, and
Chunhe
,
Y.
,
2016
, “
Tightness and Suitability Evaluation of Abandoned Salt Caverns Served as Hydrocarbon Energies Storage Under Adverse Geological Conditions (AGC)
,”
Appl. Energy
,
178
, pp.
703
720
.
7.
Zhang
,
N.
,
Liu
,
W.
,
Zhang
,
Y.
,
Shan
,
P. F.
, and
Shi
,
X. L.
,
2020
, “
Microscopic Pore Structure of Surrounding Rock for Underground Strategic Petroleum Reserve (SPR) Caverns in Bedded Rock Salt
,”
Energies
,
13
(
7
), p.
1565
.
8.
Li
,
J.
,
Shi
,
X.
, and
Zhang
,
S.
,
2020
, “
Construction Modeling and Parameter Optimization of Multi-step Horizontal Energy Storage Salt Caverns
,”
Energy
,
203
, p.
117840
.
9.
Soubeyran
,
A.
,
Rouabhi
,
A.
, and
Coquelet
,
C.
,
2019
, “
Thermodynamic Analysis of Carbon Dioxide Storage in Salt Caverns to Improve the Power-to-Gas Process
,”
Appl. Energy
,
242
, pp.
1090
1107
.
10.
Le Duigou
,
A.
,
Bader
,
A. G.
,
Lanoix
,
J. C.
, and
Nadau
,
L.
,
2017
, “
Relevance and Costs of Large Scale Underground Hydrogen Storage in France
,”
Int. J. Hydrogen Energy
,
42
(
36
), pp.
22987
23003
.
11.
Zhang
,
G. X.
,
Li
,
B.
,
Zheng
,
D. W.
,
Ding
,
G. S.
,
Wei
,
H.
, and
Qian
,
P. S.
,
2017
, “
Challenges to and Proposals for Underground gas Storage (UGS) Business in China
,”
Nat. Gas Ind.
,
37
(
1
), pp.
153
159
.
12.
Wang
,
T.
,
Yang
,
C.
,
Ma
,
H.
,
Li
,
Y.
,
Shi
,
X.
,
Li
,
J.
, and
Daemen
,
J. J. K.
,
2016
, “
Safety Evaluation of Salt Cavern Gas Storage Close to an Old Cavern
,”
Int. J. Rock Mech. Mining Sci.
,
83
, pp.
95
106
.
13.
Liu
,
W.
,
Jiang
,
D.
,
Chen
,
J.
,
Daemen
,
J. J. K.
,
Tang
,
K.
, and
Wu
,
F.
,
2018
, “
Comprehensive Feasibility Study of Two-Well-Horizontal Caverns for Natural Gas Storage in Thinly-Bedded Salt Rocks in China
,”
Energy
,
143
(
15
), pp.
1006
1019
.
14.
Deng
,
J. Q.
,
Yang
,
Q.
, and
Liu
,
Y. R.
,
2012
, “
Time-Dependent Behavior and Stability Evaluation of Gas Storage Caverns in Salt Rock Based on Deformation Reinforcement Theory
,”
Tunnell. Underground Space Technol.
,
42
, pp.
277
292
.
15.
Liu
,
W.
,
Zhang
,
Z.
,
Chen
,
J.
,
Fan
,
J.
,
Jiang
,
D.
,
Jjk
,
D.
, and
Li
,
Y.
,
2019
, “
Physical Simulation of Construction and Control of Two Butted-Well Horizontal Cavern Energy Storage Using Large Molded Rock Salt Specimens
,”
Energy
,
185
, pp.
682
694
.
16.
Liu
,
W.
,
Muhammad
,
N.
,
Chen
,
J.
,
Spiers
,
C. J.
,
Peach
,
C. J.
,
Deyi
,
J.
, and
Li
,
Y.
,
2016
, “
Investigation on the Permeability Characteristics of Bedded Salt Rocks and the Tightness of Natural Gas Caverns in Such Formations
,”
J. Nat. Gas Sci. Eng.
,
35
, pp.
468
482
.
17.
Wanyan
,
Q. Q.
,
An
,
G. Y.
,
Li
,
K.
,
Li
,
D. X.
,
Gou
,
Y. X.
,
Ran
,
L. N.
, and
Bai
,
S.
,
2020
, “
Status and Expansion Direction of Salt-Cavern Gas Storage Technologies
,”
Oil Drill. Prod. Technol.
,
42
(
4
), pp.
444
448
.
18.
Ran
,
L. N.
,
Wanyan
,
Q. Q.
,
Wang
,
L. X.
,
Sun
,
C. L.
,
Gou
,
Y. X.
, and
Li
,
K.
,
2017
, “
The Expansion Trend and Enlightenment of Foreign Salt Cavern Underground Gas Storage
,”
Salt Sci. Chem. Ind.
,
46
(
12
), pp.
9
12
.
19.
Yuan
,
G.
,
Wan
,
J.
,
Li
,
J.
,
Li
,
G.
,
Xia
,
Y.
,
Ban
,
F.
,
Zhang
,
H.
,
Jurado
,
M. J.
,
Peng
,
T.
, and
Liu
,
W.
,
2021
, “
Stability Analysis of a Typical Two-Well-Horizontal Saddle-Shaped Salt Cavern
,”
J. Energy Storage
,
40
, p.
102763
.
20.
Moditis
,
K.
,
Paidoussis
,
M.
, and
Ratigan
,
J.
,
2016
, “
Dynamics of a Partially Confined, Discharging, Cantilever Pipe With Reverse External Flow
,”
J. Fluids Struct.
,
63
, pp.
120
139
.
21.
Wan
,
J.
,
Peng
,
T.
,
Yuan
,
G.
,
Ban
,
F.
,
Jurado
,
M. J.
, and
Xia
,
Y.
,
2021
, “
Influence of Tubing/oil-Blanket Lifting on Construction and Geometries of Two-Well-Horizontal Salt Caverns
,”
Tunnell. Underground Space Technol.
,
108
, p.
103688
.
22.
Jiang
,
D. Y.
,
Qiu
,
H. F.
,
Chen
,
J.
, and
Ren
,
S.
,
2012
, “
The Similar Experimental Study on the Concentration Field in Construction Period of the Storage of Salt Rock in Solution Mining
,”
Nat. Res. Sustain. Expansion II, Pts 1-4
,
524−527
, pp.
494
502
.
23.
Li
,
P.
,
Li
,
Y.
,
Shi
,
X.
,
Zhao
,
A.
,
Hao
,
S.
,
Gong
,
X.
,
Jiang
,
S.
, and
Liu
,
Y.
,
2021
, “
Stability Analysis of U-Shaped Horizontal Salt Cavern for Underground Natural Gas Storage
,”
J. Energy Storage
,
38
, p.
102541
.
24.
Li
,
J.
,
Shi
,
X.
,
Yang
,
C.
,
Li
,
Y.
,
Wang
,
T.
,
Ma
,
H.
,
Shi
,
H.
,
Li
,
J.
, and
Liu
,
J. Q.
,
2017
, “
Repair of Irregularly Shaped Salt Cavern Gas Storage by Re-leaching Under Gas Blanket
,”
J. Nat. Gas Sci. Eng.
,
45
, pp.
848
859
.
25.
Wan
,
J.
,
Peng
,
T.
,
Shen
,
R.
, and
Jurado
,
M. J.
,
2019
, “
Numerical Model and Program Expansion of TWH Salt Cavern Construction for UGS
,”
J. Petroleum Sci. Eng.
,
179
, pp.
930
940
.
26.
Saberian
,
A.
,
1974
, “
Numerical Simulation of Expansion of Solution-Mined Storage Cavities
,”
Ph.D. thesis
,
Texas University
.
27.
Saberian
,
A.
,
1995
, “
A Preliminary Model for Horizontal Well Leaching
,”
Proceedings of the Solution Mining Research Institute Fall Meeting
,
San Antonio, TX
,
Oct. 22–25
.
28.
Russo
,
A. J.
,
1983
,
User’s Manual for the Salt Solution Mining Code
,
SANSMIC
,
California, CA
.
29.
Kunstman
,
A.
, and
Urbanczyk
,
K.
,
2009
, “
Application of Winubro Software to Modeling of Cavern Expansion in Trona Deposit
,”
Proceedings of the Solution Mining Research Institute Technical Conference
,
Krakow, Poland
,
Apr. 27–28
.
30.
Li
,
J.
,
Tang
,
Y.
,
Shi
,
X.
,
Xu
,
W.
, and
Yang
,
C.
,
2019
, “
Modeling the Construction of Energy Storage Salt Caverns in Bedded Salt
,”
Appl. Energy
,
255
, p.
113866
.
31.
Li
,
J.
,
Yang
,
C.
,
Shi
,
X.
,
Xu
,
W.
,
Li
,
Y.
, and
Daemen
,
J. J. K.
,
2020
, “
Construction Modeling and Shape Prediction of Horizontal Salt Caverns for Gas/Oil Storage in Bedded Salt
,”
J. Petroleum Sci. Eng.
,
190
, p.
107058
.
32.
Nole
,
J. S.
,
Hantlemann
,
O.
, and
Meister
,
S.
,
1974
, “
Numerical Simulation of the Solution Mining Process
,”
Proceedings of the SPE European Spring Meeting
,
Amsterdam, The Netherlands
,
May 29
.
33.
Hassanizadeh
,
S. M.
,
1988
, “
Modeling Species Transport by Concentrated Brine in Aggregated Porous Media
,”
Trans. Porous Media
,
3
, pp.
299
318
.
34.
Wan
,
J.
,
Peng
,
T.
,
Jurado
,
M. J.
,
Shen
,
R.
,
Yuan
,
G.
, and
Ban
,
F.
,
2020
, “
The Influence of the Water Injection Method on Two-Well-Horizontal Salt Cavern Construction
,”
J. Petroleum Sci. Eng.
,
184
, p.
106560
.
35.
Igoshin
,
A. I.
,
Kazaryan
,
V. A.
,
Pozdnyakov
,
A. G.
, et al
,
1997
, “
Creation of Tunnel Cavities in Rock Salt Beds of Small Thickness
,”
Solution Mining Research Institute Technical Conference
,
Cracow, Poland
, May 11–14.
36.
Rezunenko
,
V.
,
Smirnov
,
V.
, and
Kazaryan
,
V.
,
2001
, “
Tunnel Type Underground Reservoir Construction Project
,”
Paper Presented at the Solution Mining Research Institute Technical Conference
,
Orlando, FL
,
Apr. 23–24
.
37.
Ban
,
F. S.
,
Yuan
,
G. J.
,
Wan
,
J. F.
, et al
,
2020
, “
The Optimum Interwell Distance Analysis of Two Well-Horizontal Salt Cavern Construction
,”
Energy Source Part A
,
43
(
23
), pp.
3082
3100
.
38.
Chen
,
C. J.
, and
Jaw
,
S. Y.
,
1998
,
Fundamentals of Turbulence Modeling
,
Taylor & Francis
,
Washington
.
39.
Zhang
,
D. L.
,
2010
,
A Course in Computational Fluid Dynamics
,
Higher Education Press
,
Beijing
.
40.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
You do not currently have access to this content.