Abstract

Conventional directional drilling mainly relies on the sliding of screw motor and drill string to realize the change of wellbore trajectory, so the friction force is large. The use of friction reduction tools that generate axial force to change the friction state can only achieve partial friction reduction, and drill string is still in a sliding state during directional drilling. These problems are solved by using rotary steerable drilling system, which can achieve directional drilling when drill string rotates. But its use cost is high. Considering the principle of high efficiency and economy, a new friction reduction tool called drill string rotation controller is proposed, which is also used to reduce friction during directional drilling through drill string rotation. By adjusting the pump pressure, the meshing state of spline module of drill string rotation controller is changed to realize the conversion of drilling mode. In rotary drilling mode, upper drill string, drill string rotation controller, and bottom hole assembly rotate together. In directional drilling mode, upper drill string rotates and drill string rotation controller slides with bottom hole assembly. The function of the tool is verified by field experiment, and motion simulation of the tool is carried out. The results show that when the driving torque is set to 25,000 N · m, more reverse torque can be overcome in the directional drilling mode, and the drilling fluid pressure is set to 25 MPa, which can be converted to the rotary drilling mode faster.

References

1.
Gillan
,
C.
,
Boone
,
S.
,
Kostiuk
,
G.
,
Schlembach
,
C.
,
Pinto
,
J.
, and
LeBlanc
,
M.
,
2009
, “
Applying Precision Drill Pipe Rotation and Oscillation to Slide Drilling Problems
,”
SPE/IADC Drilling Conference and Exhibition
,
Amsterdam, The Netherlands
,
Mar. 17–19
, OnePetro.
2.
Maidla
,
E.
, and
Haci
,
M.
,
2004
, “
Understanding Torque: The Key to Slide-Drilling Directional Wells
,”
IADC/SPE Drilling Conference
,
Dallas, TX
,
Mar. 2–4
, OnePetro.
3.
Maidla
,
E.
,
Haci
,
M.
,
Jones
,
S.
,
Cluchey
,
M.
,
Alexander
,
M.
, and
Warren
,
T.
,
2005
, “
Field Proof of the New Sliding Technology for Directional Drilling
,”
SPE/IADC Drilling Conference
,
Amsterdam, The Netherlands
,
Feb. 23–25
, OnePetro.
4.
Johancsik
,
C. A.
,
Friesen
,
D. B.
, and
Dawson
,
R.
,
1984
, “
Torque and Drag in Directional Wells-Prediction and Measurement
,”
J. Pet. Technol.
,
36
(
06
), pp.
987
992
.
5.
Oyedere
,
M.
, and
Gray
,
K. E.
,
2020
, “
New Approach to Stiff-String Torque and Drag Modeling for Well Planning
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
103004
.
6.
Krishna
,
S.
,
Ridha
,
S.
,
Vasant
,
P.
,
Ilyas
,
S. U.
, and
Ofei
,
T. N.
,
2020
, “
Simplified Predictive Model for Downhole Pressure Surges During Tripping Operations Using Power Law Drilling Fluids
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
123001
.
7.
Livescu
,
S.
, and
Craig
,
S.
,
2017
, “
A Critical Review of the Coiled Tubing Friction-Reducing Technologies in Extended-Reach Wells. Part 1: Lubricants
,”
J. Pet. Sci. Eng.
,
157
(
1
), pp.
747
759
.
8.
Humood
,
M.
,
Ghamary
,
M. H.
,
Lan
,
P.
,
Iaccino
,
L. L.
,
Bao
,
X.
, and
Polycarpou
,
A. A.
,
2019
, “
Influence of Additives on the Friction and Wear Reduction of Oil-Based Drilling Fluid
,”
Wear
,
422
(
1
), pp.
151
160
.
9.
Tian
,
J. L.
,
Yuan
,
C. F.
,
Yang
,
L.
,
Fu
,
C. H.
,
Liu
,
G.
,
Yang
,
Z.
, and
Wu
,
C. M.
,
2015
, “
Rock-Breaking Analysis Model of New Drill Bit With Tornado-Like Bottomhole Model
,”
J. Mech. Sci. Technol.
,
29
(
4
), pp.
1745
1752
.
10.
Nili-Ahmadabadi
,
M.
,
Cho
,
D. S.
, and
Kim
,
K. C.
,
2020
, “
Design of a Novel Vortex-Based Feedback Fluidic Oscillator with Numerical Evaluation
,”
Eng. Appl. Comput. Fluid Mech.
,
14
(
1
), pp.
1302
1324
.
11.
Wang
,
H.
,
Liao
,
H.
,
Wei
,
J.
,
Liu
,
Y.
,
Niu
,
W.
,
Latham
,
J. P.
, and
Chen
,
J.
,
2022
, “
Pressure Drop Model and Jet Features of Ultra High Pressure Water Jet for Downhole Intensifier
,”
ASME J. Energy Resour. Technol.
,
144
(
12
), p.
123005
.
12.
Tian
,
J.
,
Yang
,
Y.
,
Dai
,
L.
, and
Yang
,
L.
,
2021
, “
Dynamics and Anti-Friction Characteristics Study of Horizontal Drill String Based on New Anti-Friction Tool
,”
Int. J. Green Energy
,
18
(
7
), pp.
720
730
.
13.
Cao
,
T.
,
Yu
,
K.
,
Zhu
,
H.
, and
Chen
,
X.
,
2021
, “
Investigation of the Mitigation Effect of an Anti-Stall Tool on Stick-Slip Vibrations of Drill Strings
,”
Energy Sources A: Recovery Util. Environ. Eff.
, pp.
1
20
.
14.
Liu
,
Y.
,
Chen
,
P.
,
Ma
,
T.
, and
Wang
,
X.
,
2017
, “
An Evaluation Method for Friction-Reducing Performance of Hydraulic Oscillator
,”
J. Pet. Sci. Eng.
,
157
(
1
), pp.
107
116
.
15.
Tian
,
J.
,
Yang
,
Z.
,
Li
,
Y.
,
Yang
,
L.
,
Wu
,
C.
,
Liu
,
G.
, and
Yuan
,
C.
,
2016
, “
Vibration Analysis of New Drill String System With Hydro-Oscillator in Horizontal Well
,”
J. Mech. Sci. Technol.
,
30
(
6
), pp.
2443
2451
.
16.
Mu
,
Z.
,
Li
,
G.
,
Sun
,
Z.
,
Huang
,
Z.
, and
Song
,
H.
,
2022
, “
Mechanism Research and Field Test of a Novel Axial Vibratory Tool for Friction Reduction in Long Horizontal Wells
,”
J. Pet. Sci. Eng.
,
208
(
1
), p.
109534
.
17.
Tian
,
J.
,
Tang
,
L.
,
Yan
,
B.
,
Song
,
H.
, and
Mao
,
L.
,
2023
, “
Dynamic Characteristics and Experimental Research of Dual-Piston Axial Oscillation Drag Reduction Tool
,”
ASME J. Energy Resour. Technol.
,
145
(
4
), p.
041703
.
18.
Riyami
,
M.
,
Edwards
,
J.
,
Vache
,
E.
,
Ojeiduma
,
O.
,
Darwish
,
W.
, and
Johnston
,
S.
,
2008
, “
Applications of Rotary Steerable in Low Cost Environments
,”
IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition
,
Jakarta, Indonesia
,
Aug. 25–27
, OnePetro.
19.
Abbas
,
A. K.
,
Alsaba
,
M. T.
, and
Al Dushaishi
,
M. F.
,
2022
, “
Comprehensive Experimental Investigation of Hole Cleaning Performance in Horizontal Wells Including the Effects of Drill String Eccentricity, Pipe Rotation, and Cuttings Size
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
063006
.
20.
Wang
,
M.
,
Li
,
X.
,
Wang
,
G.
,
Huang
,
W.
,
Fan
,
Y.
,
Luo
,
W.
, and
Shi
,
X.
,
2020
, “
Prediction Model of Build Rate of Push-the-Bit Rotary Steerable System
,”
Math. Probl. Eng.
,
2020
(
1
), pp.
1
9
.
21.
Andrade
,
C. P.
,
Saavedra
,
J. L.
,
Tunkiel
,
A.
, and
Sui
,
D.
,
2021
, “
Rotary Steerable Systems: Mathematical Modeling and Their Case Study
,”
J. Pet. Explor. Prod. Technol.
,
11
(
6
), pp.
2743
2761
.
22.
Schaaf
,
S.
,
Mallary
,
C. R.
, and
Pafitis
,
D.
,
2000
, “
Point-the-Bit Rotary Steerable System: Theory and Field Results
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Oct. 1–4
, OnePetro.
23.
JPT staff
,
2013
, “
Hybrid Rotary Steerable System Delivers Higher Build Rates and Smoother Holes
,”
J. Pet. Technol.
,
65
(
04
), pp.
32
34
.
24.
Biscaro
,
E.
,
D'Alessandro
,
J. D.
,
Moreno
,
A.
,
Hahn
,
M.
,
Lamborn
,
R.
,
Al-Naabi
,
M. H.
, and
Bowser
,
A. C.
,
2015
, “
New Rotary Steerable Drilling System Delivers Extensive Formation Evaluation for High Build Rate Wells
,”
SPE Western Regional Meeting
,
Garden Grove, CA
,
April 27–30
, OnePetro.
25.
Jerez
,
H.
, and
Tilley
,
J.
,
2014
, “
Advancements in Powered Rotary Steerable Technologies Result in Record-Breaking Runs
,”
SPE Latin America and Caribbean Petroleum Engineering Conference
,
Maracaibo, Venezuela
,
May 21–23
, OnePetro.
26.
Gillan
,
C.
,
Boone
,
S.
,
LeBlanc
,
M.
,
Picard
,
R.
, and
Fox
,
T.
,
2011
, “
Applying Computer Based Precision Drill Pipe Rotation and Oscillation to Automate Slide Drilling Steering Control
,”
Canadian Unconventional Resources Conference
,
Calgary, Alberta, Canada
,
Nov. 15–17
, OnePetro.
27.
Roohi
,
A.
,
Ashena
,
R.
,
Thonhauser
,
G.
,
Finkbeiner
,
T.
,
Gerbaud
,
L.
, and
Rasouli
,
V.
,
2022
, “
An Experimental Investigation of Drilling Performance Improvement Using Reaming While Drilling
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
013202
.
28.
Ke
,
C.
, and
Song
,
X.
,
2021
, “
Down-Hole Directional Drilling Dynamics Modeling Based on a Hybrid Modeling Method With Model Order Reduction
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
103202
.
29.
Lee
,
S.
, and
Junkins
,
J. L.
,
1992
, “
Explicit Generalization of Lagrange's Equations for Hybrid Coordinate Dynamical Systems
,”
J. Guid. Control Dyn.
,
15
(
6
), pp.
1443
1452
.
30.
Xu
,
F.
,
1989
, “
Calculation of Friction Caused by O-Ring Seal
,”
Chin. Pet. Mach.
,
8
(
17
), pp.
9
10
.
You do not currently have access to this content.