Abstract

The gas phase accelerating beyond the liquid phase caused by gas-liquid slippage cannot be ignored in short horizontal pipelines with undulation and inflow, and there is no method to calculate it. Therefore, a pressure drop prediction model for variable liquid holdup was developed in this paper. The theoretical model calculation results were validated using computational fluid dynamics. The effectiveness of the pressure drop prediction model has been demonstrated. The various pressure drop, liquid holdup, and development length laws were then examined. The findings indicate that: the pressure drop in the developed section of stratified flow is not only the friction pressure drop but also the acceleration pressure drop; the length of the stratified flow development section and pipeline pressure drop are more easily affected by the flowrate than the liquid holdup in the pipe inlet. Using the relevant data from coalbed methane horizontal wells as an example, the L/D of the development section is approximately 40–85 when the inlet flowrate is 0.8–1 m/s, and the inlet liquid holdup is 0.3–0.5. The pressure drop characteristics in the gas-liquid stratified flow development section are obviously different from those in the stable section. The development of a pressure drop prediction model for the stratified flow development section lays the theoretical groundwork for the investigation of gas-liquid two-phase flow in horizontal pipelines with short or undulating and inflow conditions.

References

1.
Liu
,
Y.
,
Luo
,
C.
,
Liu
,
T.
,
Ren
,
G.
, and
Wang
,
Z.
,
2019
, “
Prediction of Gas-Liquid Two-Phase Flow Patterns in Horizontal Gas Wells
,”
J. Southwest Petroleum Univ. Sci. Technol. Ed.
,
41
(
3
), p.
107
.
2.
Li
,
L. I.
,
Xiongxiong
,
W.
,
Shuangquan
,
L. I. U.
,
Jianyi
,
L.
,
Yijun
,
G.
, and
Chao
,
L.
,
2019
, “
Gas-Water Flow Law in Horizontal Wellbore and Its Influencing Factors
,”
Acta Petrol. Sin.
,
40
(
10
), p.
1244
.
3.
Shadloo
,
M. S.
,
Rahmat
,
A.
,
Karimipour
,
A.
, and
Wongwises
,
S.
,
2020
, “
Estimation of Pressure Drop of Two-Phase Flow in Horizontal Long Pipes Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
112110
.
4.
Zhang
,
Q.
,
Wang
,
Z.
,
Wang
,
X.
, and
Yang
,
J.
,
2014
, “
A New Comprehensive Model for Predicting the Pressure Drop of Flow in the Horizontal Wellbore
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042903
.
5.
Verma
,
O. P.
,
Kumar
,
A.
, and
Sikarwar
,
B. S.
,
2020
, “
Numerical Simulation and Comparative Analysis of Pressure Drop Estimation in Horizontal and Vertical Slurry Pipeline
,”
J. Mech. Eng. Sci.
,
14
(
2
), pp.
6610
6624
.
6.
Pan
,
J.
,
Pu
,
X.
,
Wang
,
W.
,
Yan
,
M.
, and
Wang
,
L.
,
2020
, “
A Prediction Model for the Critical Liquid-Carrying Velocity of Gas–Liquid Stratified Flow in Micro-Tilting Line Pipes With Low Liquid Contents
,”
Nat. Gas Ind. B
,
7
(
4
), pp.
380
389
.
7.
Luo
,
W.
,
Tang
,
C.
, and
Feng
,
Y.
,
2018
, “
A Semianalytical Model for Horizontal-Well Productivity With Pressure Drop Along the Wellbore
,”
SPE J.
,
23
(
05
), pp.
1603
1614
.
8.
Al-Dogail
,
A. S.
, and
Gajbhiye
,
R. N.
,
2021
, “
Effects of Density, Viscosity and Surface Tension on Flow Regimes and Pressure Drop of Two-Phase Flow in Horizontal Pipes
,”
J. Petroleum Sci. Eng.
,
205
, p.
108719
.
9.
Zhang
,
L.
,
2020
,
Experimental Research and Transient Simulation of Gas-Liquid Pipe Flow
,
Wuhan University
,
Wuhan
.
10.
Liu
,
Z.
,
Liao
,
R.
,
Lei
,
Y.
,
Luo
,
W.
, and
Su
,
Y.
,
2019
, “
Liquid Holdup Models of Gas-Liquid Two-Phase Stratified Flow and Annular Flow in Horizontal
,”
J. Xi’an Shiyou Univ. Nat. Sci. Ed.
,
34
(
6
), pp.
33
38
.
11.
Song
,
H.
,
Guo
,
H.
,
Shi
,
H.
, and
Wang
,
Q.
,
2021
, “
Numerical Simulation and Experimental Studies on Velocity Field of Oil and Water Stratified Flow in Low Flow Rate Horizontal Wells
,”
Prog. Geophys.
,
36
(
3
), pp.
1103
1110
.
12.
Wen
,
Y.
,
Luo
,
W.
,
Wang
,
J.
,
Liao
,
R.
, and
Lu
,
X.
,
2019
, “
Experiment of Slippage Loss of Liquid-Gas Two-Phase Flow in Horizontal Pipes
,”
Sci. Technol. Eng.
,
19
(
4
), pp.
115
120
.
13.
Liu
,
Y.
,
Bai
,
X.
,
Cheng
,
Y.
,
Wang
,
X.
,
Song
,
H.
, and
Liao
,
R.
,
2020
, “
Experimental Study on Pressure Drop of Gas-Liquid Two-Phase Flow in Inclined Annulus Pipe
,”
Sci. Technol. Pap. China
,
15
(
9
), pp.
1090
1098
.
14.
Lockhart
,
R. W.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
(
1
), pp.
39
48
.
15.
Beggs
,
D. H.
, and
Brill
,
J. P.
,
1973
, “
A Study of Two-Phase Flow in Inclined Pipes
,”
J. Petrol. Technol.
,
25
(
5
), pp.
607
617
.
16.
Al-Dogail
,
A. S.
, and
Gajbhiye
,
R. N.
,
2021
, “
Effects of Density, Viscosity and Surface Tension on Flow Regimes and Pressure Drop of Two-Phase Flow in Horizontal Pipes
,”
J. Petroleum Sci. Eng.
,
205
, p.
108719
.
17.
Baker
,
O.
,
1953
, “
Design of Pipelines for the Simultaneous Flow of Oil and Gas
”.
18.
Chen
,
J.
, and
Chen
,
T.
,
2009
,
LPG Liquid Two-Phase Pipe Flow
,
Petroleum Industry Press
,
Beijing
.
19.
Taitel
,
Y.
, and
Dukler
,
A. E.
,
1976
, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow
,”
AIChE J.
,
22
(
1
), pp.
47
55
.
20.
Hart
,
J.
,
Hamersma
,
P. J.
, and
Fortuin
,
J. M. H.
,
1989
, “
Correlations Predicting Frictional Pressure Drop and Liquid Holdup During Horizontal Gas-Liquid Pipe Flow With a Small Liquid Holdup
,”
Int. J. Multiphase Flow
,
15
(
6
), pp.
947
964
.
21.
Chen
,
X. T.
,
Cal
,
X. D.
, and
Brill
,
J. P.
,
1997
, “
Gas-Liquid Stratified-Wavy Flow in Horizontal Pipelines
,”
ASME J. Energy Resour. Technol.
,
119
(
4
), pp.
209
216
.
22.
Grolman
,
E.
, and
Fortuin
,
J. M. H.
,
1997
, “
Gas-Liquid Flow in Slightly Inclined Pipes
,”
Chem. Eng. Sci.
,
52
(
24
), pp.
4461
4471
.
23.
Banafi
,
A.
, and
Talaie
,
M. R.
,
2015
, “
A New Mechanistic Model to Predict Gas–Liquid Interface Shape of Gas–Liquid Flow Through Pipes With Low Liquid Loading
,”
AIChE J.
,
61
(
3
), pp.
1043
1053
.
24.
Xiao
,
J.
,
Shonham
,
O.
, and
Brill
,
J.
,
1990
, “
A Comprehensive Mechanistic Model for Two-Phase Flow in Pipelines
”.
25.
Gomez
,
L. E.
,
Shoham
,
O.
,
Schmidt
,
Z.
,
Chokshi
,
R. N.
, and
Northug
,
T.
,
2000
, “
Unified Mechanistic Model for Steady-State Two-Phase Flow: Horizontal to Vertical Upward Flow
,”
SPE J.
,
5
(
3
), pp.
339
350
.
26.
Hua
,
C.
,
Yin
,
Y.
,
Sun
,
S.
,
Zhu
,
H.
, and
Xing
,
L.
,
2020
, “
Each-Phase Metering With Gas-Liquid Stratified Flow Based on the Multi-frequency Coriolis Principle
,”
Appl. Sci.
,
10
(
21
), p.
7747
.
27.
Adegboye
,
M. A.
,
Karnik
,
A.
, and
Fung
,
W.-K.
,
2021
, “
Numerical Study of Pipeline Leak Detection for Gas-Liquid Stratified Flow
,”
J. Nat. Gas Sci. Eng.
,
94
, p.
104054
.
28.
Tas-Koehler
,
S.
,
Liao
,
Y.
, and
Hampel
,
U.
,
2021
, “
A Critical Analysis of Drag Force Modelling for Disperse Gas-Liquid Flow in a Pipe with an Obstacle
,”
Chem. Eng. Sci
,
246
, p.
117007
.
29.
Mohmmed Abdalellah
,
O.
,
Al-Kayiem Hussain
,
H.
, and
Osman
,
A. B.
,
2021
, “
Investigations on the Slug Two-Phase Flow in Horizontal Pipes: Past, Presents, and Future Directives
,”
Chem. Eng. Sci.
,
238
, p.
116611
.
You do not currently have access to this content.