Abstract

The precise estimation of fracture initiation pressure is crucial for the effective implementation of slotting-directional hydraulic fracturing methods in coal seams. Nonetheless, current models fail to account for the impact of the morphology of the slotted borehole and the anisotropy of coal. To address this issue, a three-dimensional model was created in this study, which simplified the slotted borehole as an elliptical medium and the coal as an orthotropic medium. Laboratory experiments were conducted to validate the model, and the findings regarding the changes in fracture initiation pressure and deflection angle due to various factors were presented. The calculated outcomes of the proposed model align with the observed pattern of the experimental results, and the numerical discrepancy falls within the acceptable range of 7%, showcasing the precision of the proposed model. A rise in the horizontal stress difference and a decrease in the depth of the slots will result in an elevation of the fracture initiation pressure and deflection angle. In addition, the slotting angle will impact the distribution pattern of the fracture initiation pressure and deflection angle, underscoring the significance of these factors in the hydraulic fracturing of slotted boreholes.

References

1.
Ge
,
Z.
,
Cao
,
S.
,
Lu
,
Y.
, and
Gao
,
F.
,
2020
, “
Fracture Mechanism and Damage Characteristics of Coal Subjected to a Water Jet Under Different tri-Axial Stress Conditions
,”
J. Petrol. Sci. Eng.
,
208
, p.
109157
.
2.
Jiang
,
R.
,
Liu
,
X.
,
Wang
,
X.
,
Wang
,
Q.
,
Cui
,
Y.
, and
Zhang
,
G.
,
2021
, “
A Semi-Analytical Fractal-Fractional Mathematical Model for Multi-Fractured Horizontal Wells in Coalbed Methane Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
013002
.
3.
Vedachalam
,
N.
,
Srinivasalu
,
S.
,
Rajendran
,
G.
,
Ramadass
,
G. A.
, and
Atmanand
,
M.
,
2015
, “
Review of Unconventional Hydrocarbon Resources in Major Energy Consuming Countries and Efforts in Realizing Natural Gas Hydrates as a Future Source of Energy
,”
J. Nat. Gas. Sci. Eng.
,
26
, pp.
163
175
.
4.
Du
,
M.
,
Gao
,
F.
,
Cai
,
C.
,
Su
,
S.
, and
Wang
,
Z.
,
2022
, “
Differences in Petrophysical and Mechanical Properties Between Low- and Middle-Rank Coal Subjected to Liquid Nitrogen Cooling in Coalbed Methane Mining
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
042303
.
5.
Li
,
H.
,
Lau
,
H.
, and
Huang
,
S.
,
2018
, “
China’s Coalbed Methane Development: A Review of the Challenges and Opportunities in Subsurface and Surface Engineering
,”
J. Pet. Sci. Eng.
,
166
, pp.
621
635
.
6.
Lin
,
W.
,
Gao
,
T.
,
Gu
,
A.
, and
Gu
,
M.
,
2010
, “
CBM Nitrogen Expansion Liquefaction Processes Using Residue Pressure of Nitrogen From Adsorption Separation
,”
ASME J. Energy Resour. Technol.
,
132
(
3
), p.
032501
.
7.
Miao
,
Y.
,
Zhao
,
C.
, and
Zhou
,
G.
,
2022
, “
Gas Flowrate Evaluation in Coal Coupling the Matrix Shrinkage Effect Caused by Water Extraction
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032301
.
8.
Guo
,
X.
,
Zhang
,
T.
,
Di
,
D.
,
Qin
,
X.
,
Zhai
,
Y.
,
Du
,
J.
, and
Mao
,
J.
,
2021
, “
Gas and Water Rate Forecasting of Coalbed Methane Reservoirs Based on the Rescaled Exponential Method
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
053002
.
9.
Lu
,
Y.
,
Zheng
,
J.
,
Ge
,
Z.
,
Zhou
,
Z.
,
Wang
,
H.
, and
Zhang
,
L.
,
2022
, “
A Study of Variation in the Initiation Pressure and Fracture Distribution Patterns of Raw Coal in SC-CO2 Fracturing Under the True Tri-Axial System
,”
Rock Mech. Rock Eng.
,
55
(
6
), pp.
3425
3438
.
10.
Zuo
,
S.
,
Ge
,
Z.
,
Lu
,
Y.
,
Cao
,
S.
, and
Zhang
,
L.
,
2021
, “
Analytical and Experimental Investigation of Perforation Layout Parameters on Hydraulic Fracture Propagation
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
013005
.
11.
Zuo
,
S.
,
Peng
,
S.
,
Zhou
,
D.
,
Wang
,
W.
, and
Zhang
,
L.
,
2022
, “
An Analytical Model of the Initiation Pressure for Multilayer Tree-Type Hydraulic Fracturing in gas-Bearing Coal Seams
,”
Geochem., Geophys. Geosyst.
,
8
(
6
), p.
206
.
12.
Zhong
,
J.
,
Ge
,
Z.
,
Lu
,
Y.
,
Zhou
,
Z.
, and
Zheng
,
J.
,
2020
, “
New Mechanical Model of Slotting–Directional Hydraulic Fracturing and Experimental Study for Coalbed Methane Development
,”
Nat. Resour. Res.
,
30
(
1
), pp.
639
656
.
13.
Bruno
,
G.
, and
Einstein
,
M.
,
2014
, “
Finite Element Study of Fracture Initiation in Flaws Subject to Internal Fluid Pressure and Vertical Stress
,”
Int. J. Solids Struct.
,
51
(
23–24
), pp.
4122
4136
.
14.
Zhou
,
D.
,
Zheng
,
P.
,
He
,
P.
, and
Peng
,
J.
,
2016
, “
Hydraulic Fracture Propagation Direction During Volume Fracturing in Unconventional Reservoirs
,”
J. Pet. Sci. Eng.
,
141
, pp.
82
89
.
15.
Cheng
,
Y.
,
Lu
,
Y.
,
Ge
,
Z.
,
Cheng
,
L.
,
Zheng
,
J.
, and
Zhang
,
W.
,
2018
, “
Experimental Study on Crack Propagation Control and Mechanism Analysis of Directional Hydraulic Fracturing
,”
Fuel
,
218
, pp.
316
324
.
16.
Ge
,
Z.
,
Zhong
,
J.
,
Lu
,
Y.
,
Cheng
,
L.
,
Zheng
,
J.
,
Zhou
,
Z.
, and
Cheng
,
Y.
,
2019
, “
Directional Distance Prediction Model of Slotting–Directional Hydraulic Fracturing (SDHF) for Coalbed Methane (CBM) Extraction
,”
J. Pet. Sci. Eng.
,
183
, p.
106429
.
17.
Zuo
,
S.
,
Ge
,
Z.
,
Deng
,
K.
,
Zheng
,
J.
, and
Wang
,
H.
,
2020
, “
Fracture initiation pressure and failure modes of tree-type hydraulic fracturing in gas-bearing coal seams
,”
J. Nat. Gas Sci. Eng.
,
77
, p.
103260
.
18.
Chen
,
M.
,
Guo
,
T.
,
Qu
,
Z.
,
Sheng
,
M.
, and
Mu
,
L.
,
2020
, “
Numerical Investigation Into Hydraulic Fracture Initiation and Breakdown Pressures Considering Wellbore Compliance Based on the Boundary Element Method
,”
J. Pet. Sci. Eng.
,
211
, p.
110162
.
19.
Guo
,
T.
,
Gong
,
F.
,
Qu
,
Z.
,
Tian
,
X.
, and
Liu
,
B.
,
2019
, “
Study on Fracture Initiation Mechanisms of Hydraulic Refracturing Guided by Directional Boreholes
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082901
.
20.
Qingling
,
L.
,
Shouceng
,
T.
,
Gensheng
,
L.
,
Mao
,
S.
,
Xiaojiang
,
L.
,
Tianyu
,
W.
, and
Zhonghou
,
S.
,
2018
, “
An Analytical Model for Fracture Initiation From Radial Lateral Borehole
,”
J. Pet. Sci. Eng.
,
164
, pp.
206
218
.
21.
Fan
,
Y.
,
Zhu
,
Z.
,
Zhao
,
Y.
,
Zhou
,
C.
, and
Zhang
,
X.
,
2019
, “
The Effects of Some Parameters on Perforation Tip Initiation Pressures in Hydraulic Fracturing
,”
J. Pet. Sci. Eng.
,
176
, pp.
1053
1060
.
22.
Cheng
,
Y.
,
Lu
,
Z.
,
Du
,
X.
,
Zhang
,
X.
, and
Zeng
,
M.
,
2020
, “
A Crack Propagation Control Study of Directional Hydraulic Fracturing Based on Hydraulic Slotting and a Nonuniform Pore Pressure Field
,”
Geofluids.
,
2020
, pp.
1
13
.
23.
Yuan
,
Z.
,
Shao
,
Y.
,
Xie
,
D.
, and
Huang
,
F.
,
2019
, “
Numerical Investigation on Rules of Fracture Propagation During Hydraulic Fracturing in Heterogeneous Coal-Rock Mass
,”
J. Vibroeng.
,
21
(
4
), pp.
1147
1162
.
24.
Wei
,
J.
,
Huang
,
S.
,
Hao
,
G.
,
Li
,
J.
,
Zhou
,
X.
, and
Gong
,
T.
,
2020
, “
A Multi-Perforation Staged Fracturing Experimental Study on Hydraulic Fracture Initiation and Propagation
,”
Energy Explor. Exploit.
,
38
(
6
), pp.
2466
2484
.
25.
Li
,
J.
,
Li
,
B.
,
Cheng
,
Q.
, and
Gao
,
Z.
,
2021
, “
Evolution of Anisotropic Coal Permeability Under the Effect of Heterogeneous Deformation of Fractures
,”
Nat. Resour. Res.
,
132
(
5
), pp.
3623
3642
.
26.
Laubach
,
S. E.
,
Marrett
,
R. A.
,
Olson
,
J. E.
, and
Scott
,
A. R.
,
1998
, “
Characteristics and Origins of Coal Cleat: A Review
,”
Int. J. Coal Geol.
,
35
(
1–4
), pp.
175
207
.
27.
Zhou
,
H. W.
,
Rong
,
T. L.
,
Wang
,
L. J.
,
Mou
,
R. Y.
, and
Ren
,
W. G.
,
2020
, “
A New Anisotropic Coal Permeability Model Under the Influence of Stress, Gas Sorption and Temperature: Development and Verification
,”
Int. J. Rock Mech. Min. Sci.
,
132
, p.
104407
.
28.
Li
,
Y.
,
Zhang
,
J.
, and
Liu
,
Y.
,
2016
, “
Effects of Loading Direction on Failure Load Test Results for Brazilian Tests on Coal Rock
,”
Rock Mech. Rock Eng.
,
49
(
6
), pp.
2173
2180
.
29.
Hao
,
X.
,
Du
,
W.
,
Jiang
,
Y.
,
Tannant
,
D.
,
Zhao
,
Y.
, and
Guo
,
Y.
,
2018
, “
Influence of Bedding and Cleats on the Mechanical Properties of a Hard Coal
,”
Arab. J. Geosci.
,
11
(
9
), p.
200
.
30.
Ren
,
J.
,
Niu
,
Q.
,
Wang
,
Z.
,
Wang
,
W.
,
Yuan
,
W.
,
Weng
,
H.
,
Sun
,
H.
,
Li
,
Y.
, and
Du
,
Z.
,
2022
, “
CO2 Adsorption/Desorption, Induced Deformation Behavior, and Permeability Characteristics of Different Rank Coals: Application for CO2-Enhanced Coalbed Methane Recovery
,”
Energy Fuels
,
36
(
11
), pp.
5709
5722
.
31.
Liu
,
Y.
,
Yin
,
G.
,
Li
,
M.
,
Zhang
,
D.
,
Deng
,
B.
,
Liu
,
C.
, and
Lu
,
J.
,
2019
, “
Anisotropic Mechanical Properties and the Permeability Evolution of Cubic Coal Under True Triaxial Stress Paths
,”
Rock Mech. Rock Eng.
,
52
(
8
), pp.
2505
2521
.
32.
Liu
,
Q.
, and
Tian
,
S.
,
2020
, “
Simulating Fracture Initiation From Inclined Wellbore in Layered Reservoir Using Analytical Model
,”
Energ Source Part A
, pp.
1
21
.
33.
Ma
,
T.
,
Liu
,
Y.
,
Chen
,
P.
, and
Wu
,
B.
, “
Fracture-Initiation Pressure Analysis of Horizontal Well in Anisotropic Formations
,”
Int. J. Oil Gas Coal Tech.
,
22
(
4
), pp.
447
469
.
34.
Aadnoy
,
B.
, and
Chenevert
,
M.
,
1987
, “
Stability of Highly Inclined Boreholes
,”
SPE Drill. Eng.
,
2
(
4
), pp.
364
374
.
35.
Ong
,
S.
, and
Roegiers
,
J.
,
1995
, “
Fracture Initiation From Inclined Wellbores in Anisotropic Formations
,”
J. Pet. Sci. Eng.
,
48
(
07
), pp.
612
619
.
36.
Gupta
,
D.
, and
Zaman
,
M.
,
1999
, “
Stability of Boreholes in a Geologic Media Including the Effects of Anisotropy
,”
Appl. Math Mech.
,
20
(
8
), pp.
837
866
.
37.
Zhu
,
H.
,
Guo
,
J.
,
Zhao
,
X.
,
Lu
,
Q.
,
Luo
,
B.
, and
Feng
,
Y.
,
2014
, “
Hydraulic FIP of Anisotropic Shale Gas Reservoirs
,”
Geomech. Eng.
,
7
(
4
), pp.
403
430
.
38.
Do
,
D.-P.
,
Tran
,
N.-H.
,
Hoxha
,
D.
, and
Dang
,
H.-L.
,
2017
, “
Assessment of the Influence of Hydraulic and Mechanical Anisotropy on the FIP in Permeable Rocks Using a Complex Potential Approach
,”
Int. J. Rock Mech. Min. Sci.
,
100
, pp.
108
123
.
39.
Serajian
,
V.
, and
Ghassemi
,
A.
,
2018
, “
Effect of Rock Anisotropy on Wellbore Stresses and Hydraulic Fracture Propagation
,”
Int. J. Rock Mech. Min. Sci.
,
112
, pp.
369
384
.
40.
Ma
,
T.
,
Liu
,
Y.
,
Chen
,
P.
,
Wu
,
B.
,
Fu
,
J.
, and
Guo
,
Z.
,
2019
, “
Fracture-Initiation Pressure Prediction for Transversely Isotropic Formations
,”
J. Pet. Sci. Eng.
,
176
, pp.
821
835
.
41.
Zhong
,
J.
,
Ge
,
Z.
,
Lu
,
Y.
,
Zhou
,
Z.
, and
Zheng
,
J.
,
2021
, “
Prediction of Fracture Initiation Pressure in Multiple Failure Hydraulic Fracturing Modes: Three-Dimensional Stress Model Considering Borehole Deformation
,”
J. Pet. Sci. Eng.
,
199
, p.
108264
.
42.
Ren
,
L.
,
Jiang
,
H.
,
Zhao
,
J.
,
Lin
,
R.
,
Wang
,
Z.
, and
Xu
,
Y.
,
2022
, “
Theoretical Study on Fracture Initiation in Deep Perforated Wells With Considering Wellbore Deformation
,”
J. Pet. Sci. Eng.
,
211
, p.
110141
.
43.
Togashi
,
Y.
,
Kikumoto
,
M.
,
Tani
,
K.
,
Hosoda
,
K.
, and
Ogawa
,
K.
,
2021
, “
Determination of 12 Orthotropic Elastic Constants for Rocks
,”
Int. J. Rock Mech. Min. Sci.
,
147
, p.
104889
.
44.
Setiwan
,
N. B.
, and
Zimmerman
,
R. W.
,
2018
, “
Wellbore Breakout Prediction in Transversely Isotropic Rocks Using True-Triaxial Failure Criteria
,”
Int. J. Rock Mech. Min. Sci.
,
112
, pp.
313
322
.
45.
Ma
,
T.
,
Wang
,
H.
,
Liu
,
Y.
,
Shi
,
Y.
, and
Ranjith
,
P. G.
,
2022
, “
Fracture-Initiation Pressure Model of Inclined Wells in Transversely Isotropic Formation With Anisotropic Tensile Strength
,”
Int. J. Rock Mech. Min. Sci.
,
159
, p.
105235
.
46.
Nova
,
R.
, and
Zaninetti
,
A.
,
1990
, “
An Investigation Into the Tensile Behaviour of a Schistose Rock
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
27
(
4
), pp.
231
242
.
47.
Ma
,
T.
,
Zhang
,
Q.
,
Chen
,
P.
,
Yang
,
C.
, and
Zhao
,
J.
,
2017
, “
Fracture Pressure Model for Inclined Wells in Layered Formations With Anisotropic Rock Strengths
,”
J. Pet. Sci. Eng.
,
149
, pp.
393
408
.
48.
Deng
,
J.
,
Lin
,
C.
,
Yang
,
Q.
,
Liu
,
Y.
,
Tao
,
Z.
, and
Duan
,
H.
,
2016
, “
Investigation of Directional Hydraulic Fracturing Based on True Tri-Axial Experiment and Finite Element Modeling
,”
Comput. Geotech.
,
75
, pp.
28
47
.
49.
Aslannezhad
,
M.
,
Kalantariasl
,
A.
, and
Keshavarz
,
A.
,
2021
, “
Borehole Stability in Shale Formations: Effects of Thermal-Mechanical-Chemical Parameters on Well Design
,”
J. Nat. Gas Sci. Eng.
,
88
, p.
103852
.
50.
Qi
,
D.
,
Li
,
L.
, and
Jiao
,
Y.
,
2018
, “
The Stress State Around an Elliptical Borehole in Anisotropy Medium
,”
J. Pet. Sci. Eng.
,
166
, pp.
313
323
.
51.
Milne-Thomson
,
L. M.
,
1960
,
Plane Elastic Systems
,
Springer Verlag
,
Berlin
.
You do not currently have access to this content.