Abstract

Reservoir characterization is one of the essential procedures for decision makings. However, conventional inversion methods of history matching have several inevitable issues of losing geological information and poor performances, when it is applied to channel reservoirs. Therefore, we propose a model regeneration scheme for reliable uncertainty quantification of channel reservoirs without conventional model inversion methods. The proposed method consists of three parts: feature extraction, model selection, and model generation. In the feature extraction part, drainage area localization and discrete cosine transform are adopted for channel feature extraction in near-wellbore area. In the model selection part, K-means clustering and an ensemble ranking method are utilized to select models that have similar characteristics to a true reservoir. In the last part, deep convolutional generative adversarial networks (DCGAN) and transfer learning are applied to generate new models similar to the selected models. After the generation, we repeat the model selection process to select final models from the selected and the generated models. We utilize these final models to quantify uncertainty of a channel reservoir by predicting their future productions. After applying the proposed scheme to three different channel fields, it provides reliable models for production forecasts with reduced uncertainty. The analyses show that the scheme can effectively characterize channel features and increase a probability of existence of models similar to a true model.

References

1.
Jahanbakhshi
,
S.
,
Pishvaie
,
M. R.
, and
Boozarjomehry
,
R. B.
,
2018
, “
Joint Estimation of Facies Boundaries and Petro Physical Properties in Multi-Facies Channelized Reservoirs Through Ensemble-Based Kaman Filter and Level Set Parameterization
,”
J. Pet. Sci. Eng.
,
167
, pp.
752
773
.
2.
Kim
,
S.
,
Jung
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Initial Ensemble Design Scheme for Effective Characterization of Three-Dimensional Channel Gas Reservoirs With an Aquifer
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022911
.
3.
Jung
,
S.
, and
Choe
,
J.
,
2010
, “
Stochastic Estimation of Oil Production by History Matching With Ensemble Kaman Filter
,”
Energy Sources, Part A
,
36
(
10
), pp.
952
961
.
4.
Shin
,
Y.
,
Jeong
,
H.
, and
Choe
,
J.
,
2010
, “
Reservoir Characterization Using an EnKF and a Non-Parametric Approach for Highly Non-Gaussian Permeability Fields
,”
Energy Sources, Part A
,
32
(
16
), pp.
1569
1578
.
5.
Zhou
,
H.
,
Li
,
L.
, and
Franssen
,
H.
,
2012
, “
Pattern Recognition in a Bimodal Aquifer Using the Normal-Score Ensemble Kaman Filter
,”
Math. Geosci.
,
44
(
2
), pp.
169
185
.
6.
Lee
,
K.
,
Jung
,
S.
,
Lee
,
T.
, and
Choe
,
J.
,
2017
, “
Use of Clustered Covariance and Selective Measurement Data in Ensemble Smoother for Three-Dimensional Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022905
.
7.
Kang
,
B.
, and
Choe
,
J.
,
2017
, “
Regeneration of Initial Ensembles With Facies Analysis for Efficient History Matching
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042903
.
8.
Chang
,
Y.
,
Stordal
,
A. S.
, and
Valestrand
,
R.
,
2016
, “
Integrated Work Flow of Preserving Facies Realism in History Matching: Application to the Brugge Field
,”
SPE J.
,
21
(
4
), pp.
1413
1424
.
9.
Kim
,
S.
,
Lee
,
C.
,
Lee
,
K.
, and
Choe
,
J.
,
2016
, “
Characterization of Channelized Gas Reservoirs Using Ensemble Kaman Filter With Application of Discrete Cosine Transformation
,”
Energ. Explor. Exploit.
,
34
(
2
), pp.
319
336
.
10.
Jo
,
H.
,
Jung
,
H.
,
Ahn
,
J.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
History Matching of Channel Reservoirs Using Ensemble Kaman Filter With Continuous Update of Channel Information
,”
Energ. Explor. Exploit.
,
35
(
1
), pp.
3
23
.
11.
Jafarpour
,
B.
, and
McLaughlin
,
D. B.
,
2009
, “
Reservoir Characterization With the Discrete Cosine Transform
,”
SPE J.
,
14
(
1
), pp.
182
201
.
12.
Jung
,
S.
, and
Choe
,
J.
,
2012
, “
Reservoir Characterization Using a Streamline-Assisted Ensemble Kaman Filter With Covariance Localization
,”
Energ. Explor. Exploit.
,
30
(
4
), pp.
645
660
.
13.
Yeo
,
M.
,
Jung
,
S.
, and
Choe
,
J.
,
2014
, “
Covariance Matrix Localization Using Drainage Area in an Ensemble Kaman Filter
,”
Energy Sources, Part A
,
36
(
19
), pp.
2154
2165
.
14.
Kim
,
S.
,
Jung
,
H.
, and
Choe
,
J.
,
2019
, “
Enhanced History Matching of Gas Reservoirs With an Aquifer Using the Combination of Discrete Cosine Transform and Level Set Method in ES-MDA
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072906
.
15.
Jung
,
H.
,
Jo
,
H.
,
Kim
,
S.
,
Kang
,
B.
,
Jeong
,
H.
, and
Choe
,
J.
,
2019
, “
Use of Channel Information Update and Discrete Cosine Transform in Ensemble Smoother for Channel Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012901
.
16.
Kim
,
S.
,
Lee
,
C.
,
Lee
,
K.
, and
Choe
,
J.
,
2016
, “
Aquifer Characterization of Gas Reservoirs Using Ensemble Kaman Filter and Covariance Localization
,”
J. Pet. Sci. Eng.
,
146
, pp.
446
456
.
17.
Jung
,
H.
,
Jo
,
H.
,
Kim
,
S.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Recursive Update of Channel Information for Reliable History Matching of Channel Reservoirs Using EnKF With DCT
,”
J. Pet. Sci. Eng.
,
154
, pp.
19
37
.
18.
Lee
,
J.
, and
Choe
,
J.
,
2016
, “
Reliable Reservoir Characterization and History Matching Using a Pattern Recognition-Based Distance
,”
ASME 2016 35TH International Conference on Ocean, Offshore and Arctic Engineering
,
June 19–24
,
Busan, Korea
.
19.
Jung
,
H.
,
Jo
,
H.
,
Kim
,
S.
,
Lee
,
K.
, and
Choe
,
J.
,
2018
, “
Geological Model Sampling Using PCA-Assisted Support Vector Machine for Reliable Channel Reservoir Characterization
,”
J. Pet. Sci. Eng.
,
167
, pp.
396
405
.
20.
Lee
,
K.
,
Lim
,
K.
,
Ahn
,
S.
, and
Kim
,
J.
,
2018
, “
Feature Extraction Using a Deep Learning Algorithm for Uncertainty Quantification of Channelized Reservoirs
,”
J. Pet. Sci. Eng.
,
171
, pp.
1007
1022
.
21.
Park
,
J.
,
Jin
,
J.
, and
Choe
,
J.
,
2016
, “
Uncertainty Quantification Using Streamline Based Inversion and Distance Based Clustering
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012906
.
22.
Kang
,
B.
,
Yang
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Ensemble Kaman Filter With Principal Component Analysis Assisted Sampling for Channelized Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032907
.
23.
Kang
,
B.
,
Jung
,
H.
,
Jeong
,
H.
, and
Choe
,
J.
,
2019
, “
Characterization of Three-Dimensional Channel Reservoirs Using Ensemble Kaman Filter Assisted by Principal Component Analysis
,”
Pet. Sci.
,
17
(
1
), pp.
182
195
.
24.
Jung
,
H.
,
Jo
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Characterization of Various Channel Fields Using an Initial Ensemble Selection Scheme and Covariance Localization
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062906
.
25.
Lee
,
K.
,
Lim
,
J.
,
Choe
,
J.
, and
Lee
,
H. S.
,
2017
, “
Regeneration of Channelized Reservoirs Using History-Matched Facies-Probability Map Without Inverse Scheme
,”
J. Pet. Sci. Eng.
,
149
, pp.
340
350
.
26.
Kang
,
B.
, and
Choe
,
J.
,
2020
, “
Uncertainty Quantification of Channel Reservoirs Assisted by Cluster Analysis and Deep Convolutional Generative Adversarial Networks
,”
J. Pet. Sci. Eng.
,
187
, p.
106742
.
27.
Radford
,
A.
,
Metz
,
L.
, and
Chintala
,
S.
,
2015
, “
Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks
,”
arXiv preprint
. https://arxiv.org/abs/1511.06434
28.
Wang
,
Y.
,
Wu
,
C.
,
Herranz
,
L.
,
Weijer
,
J.
,
Gonzalez-Garcia
,
A.
, and
Raducanu
,
B.
,
2018
, “
Transferring GANs: Generating Images from Limited Data
,”
arXiv preprint
. https://arxiv.org/abs/1805.01677
29.
Yosinski
,
J.
,
Clune
,
J.
,
Bengio
,
Y.
, and
Lipson
,
H.
,
2014
, “
How Transferable are Features in Deep Neural Networks?
arXiv preprint
. https://arxiv.org/abs/1411.1792
30.
Noguchi
,
A.
, and
Harada
,
T.
,
2019
, “
Image Generation from Small Datasets via Batch Statistics Adaptation
,”
arXiv preprint
. https://arxiv.org/abs/1904.01774
31.
Goodfellow
,
I. J.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Adv. Neural Inf. Process. Syst.
,
27
.
32.
Mo
,
S.
,
Cho
,
M.
, and
Shin
,
J.
,
2020
, “
Freeze the Discriminator: a Simple Baseline for Fine-Tuning GANs
,”
arXiv preprint
. https://arxiv.org/abs/2002.10964
33.
Oquab
,
M.
,
Bottou
,
L.
,
Laptev
,
I.
, and
Sivic
,
J.
,
2014
, “
Learning and Transferring Mid-Level Image Representations Using Convolutional Neural Networks
,”
2014 IEEE Conference on Computer Vision and Pattern Recognition
, pp.
1717
1724
.
34.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: a Method for Stochastic Optimization
,”
arXiv preprint
. https://arxiv.org/abs/1412.6980
You do not currently have access to this content.