Abstract

Drilling fluids for oilfield use consist of complex mixtures of natural and synthetic materials. The viscous properties along with the particle size distribution of the applied weight materials are vital in controlling the stability of the microstructure and density of the drilling fluid. Typical oil-based drilling fluids made for North Sea oilfield drilling application with oil–water ratios (OWRs) of 80/20 and 60/40 are examined with respect to their density stability. The stability was analyzed at both rest and dynamic conditions using flow and viscosity tests, oscillatory sweep tests, creep tests, and time-dependent oscillatory sweep tests using a scientific rheometer with a measuring system applying a grooved bob at atmospheric conditions. The quantities used in ranking the stability of the fluids include the yield stress, flow transition index, mechanical storage stability index, and dynamic sag index. We observed that the drilling fluid sample with OWR = 60/40 showed a more stable dispersion with a stronger structure having higher yield stress and flow transition index values, while the mechanical storage stability index and dynamic sag index recorded lower values. Furthermore, the Herschel–Bulkley parameters for yield stress and consistency index increased in fluid with OWR = 60/40, whereas the flow index values for both fluid samples were similar. The results of this study enable drilling fluid engineers to design realistic oil-based drilling fluids with stable microstructure to mitigate weigh material settling and sag of particles for North Sea drilling operation.

References

1.
Zamora
,
M.
, and
Jefferson
,
D.
,
1994
, “
Controlling Barite Sag Can Reduce Drilling Problems
,”
Oil Gas J.
,
92
(
7
), pp.
47
52
.
2.
Skalle
,
P.
,
Backe
,
K. R.
,
Lyomov
,
S. K.
, and
Sveen
,
J.
,
1999
, “
Barite Segregation in Inclined Boreholes
,”
J. Can. Pet. Technol.
,
38
(
13
), p.
13
.
3.
Saasen
,
A.
,
2002
, “
Sag of Weight Materials in Oil-Based Drilling Fluids
,”
Presented at the IADC/SPE Asia Pacific Drilling Technology
,
Jakarta, Indonesia
,
Sept. 9–11
, Paper No. IADC/SPE 77190.
4.
Tehrani
,
A.
,
Zamora
,
M.
, and
Power
,
D.
,
2004
, “
Role of Rheology in Barite Sag in SBM and OBM
,”
Presented at the AADE Drilling Fluids Conference
,
Houston, TX
,
Apr. 6–7
, pp.
1
16
.
5.
Jachnik
,
R. P.
, and
Robinson
,
G.
,
2000
, “
Dynamic Barite Sag in Oil Based Drilling Fluids
,”
Miner. Process. Extr. Metall. Rev.
,
20
(
1
), pp.
251
262
.
6.
Saasen
,
A.
,
Liu
,
D.
,
Marken
,
C. D.
,
1995
, “
Prediction of Barite Sag Potential of Drilling Fluids From Rheological Measurements
,”
Presented at the SPE/IADC Drilling Conference
,
Amsterdam
,
Feb. 28–Mar. 2
. Paper No. SPE 29410-MS.
7.
Dye
,
W.
,
Hemphill
,
T.
,
Gusler
,
W.
, and
Mullen
,
G.
,
2001
, “
Correlation of Ultralow-Shear-Rate Viscosity and Dynamic Barite Sag
,”
SPE Drill. Completion
,
16
(
1
), pp.
27
34
.
8.
Nguyen
,
T. C.
,
Miska
,
S.
,
Saasen
,
A.
, and
Maxey
,
J.
,
2014
, “
Using Taguchi and ANOVA Methods to Study the Combined Effects of Drilling Parameters on Dynamic Barite Sag
,”
J. Pet. Sci. Eng.
,
121
, pp.
126
133
.
9.
Nguyen
,
T.
,
Miska
,
S.
,
Yu
,
M.
,
Takach
,
N.
,
Ahmed
,
R.
,
Saasen
,
A.
,
Omland
,
T. H.
, and
Maxey
,
J.
,
2011
, “
Experimental Study of Dynamic Barite Sag in Oil-Based Drilling Fluids Using a Modified Rotational Viscometer and a Flow Loop
,”
J. Pet. Sci. Eng.
,
78
(
1
), pp.
160
165
.
10.
Massam
,
J.
,
Popplestone
,
A.
, and
Burn
,
A.
,
2004
, “
A Unique Technical Solution to Barite Sag in Drilling Fluids
,”
Presented at the AADE 2004 Drilling Fluid Conference
,
Houston, TX
,
Apr. 6–7
, Paper No. AADE-04-DF-HO-21.
11.
Tehrani
,
A.
,
2007
, “
Behaviour of Suspensions and Emulsions in Drilling Fluids
,”
Annu. Trans. Nord. Rheol. Soc.
,
15
, pp.
1
9
.
12.
Maxey
,
J.
,
2007
, “
Rheological Analysis of Static and Dynamic Sag in Drilling Fluids
,”
Annu. Trans. Nord. Rheol. Soc.
,
15
, pp.
181
188
.
13.
Elkatatny
,
S.
,
2018
, “
Enhancing the Stability of Invert Emulsion Drilling Fluid for Drilling in High-Pressure High-Temperature Conditions
,”
Energies
,
11
(
9
), p.
2393
.
14.
Mohamed
,
A.
,
Basfar
,
S.
,
Elkatatny
,
S.
, and
Al-Majed
,
A.
,
2019
, “
Prevention of Barite Sag in Oil-Based Drilling Fluids Using a Mixture of Barite and Ilmenite as Weighting Material
,”
Sustainability
,
11
(
20
), p.
5617
.
15.
Bokern
,
D. G.
,
Hunter
,
K. A.
, and
McGrath
,
K. M.
,
2003
, “
Charged Barite—Aqueous Solution Interface: Surface Potential and Atomically Resolved Visualization
,”
Langmuir
,
19
(
24
), pp.
10019
10027
.
16.
Belayneh
,
M.
,
Aadnøy
,
B. S.
, and
Thomas
,
S.
,
2016
, “
Dynamic and Static Sagging Characterization and Performances of Four Oil Based Muds
,”
Presented at the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
, Paper No. OMAE2016-54457.
17.
Kulkarni
,
S. D.
,
Savari
,
S.
,
Gantepla
,
A.
,
Murphy
,
R.
,
Jamison
,
D.
,
Tonmukayakul
,
N.
, and
Teke
,
K.
,
2013
, “
Visco-Elastic Settling Rate Models to Determine Sag Potential of Non-Aqueous Drilling Fluids
,”
Presented at the AADE National Technical Conference and Exhibition, Cox Convention Centre
,
Oklahoma City
,
Feb. 26–27
, Paper No. AADE-13-FTCE-26.
18.
Savari
,
S.
,
Kulkarni
,
S.
,
Maxey
,
J.
, and
Teke
,
K.
,
2013
, “
A Comprehensive Approach to Barite Sag Analysis on Field Muds
,”
AADE National Technical Conference and Exhibition, Cox Convention Centre
,
Oklahoma City
,
OK, Feb. 26–27
, Paper No. AADE-13-FTCE-30.
19.
Ofei
,
T. N.
,
Lund
,
B.
,
Saasen
,
A.
,
Sangesland
,
S.
,
Gyland
,
K. R.
, and
Linga
,
H.
,
2019
, “
A New Approach to Dynamic Barite Sag Analysis on Typical Field Oil-Based Drilling Fluid
,”
Annu. Trans. Nord. Rheol. Soc.
,
27
, pp.
61
69
.
20.
Maxey
,
J.
,
2006
, “
Rheological Analysis of Oilfield Drilling Fluids
,”
Presented at the AADE 2006 Fluids Conference
,
Houston, TX
,
Apr. 11–12
, Paper No. AADE-06-DF-HO-01.
21.
Mullen
,
G.
,
Perez
,
J.
,
Dye
,
B.
, and
Gusler
,
B.
,
2003
, “
Coupling of Technologies for Concurrent ECD and Barite Sag Management
,”
Presented at the AADE 2003 National Technology Conference Practical Solutions for Drilling Challenges
,
Houston, TX
,
Apr. 1–3
, Paper No. AADE-03-NTCE-29.
22.
Ofei
,
T. N.
,
Kalaga
,
D. V.
,
Lund
,
B.
,
Saasen
,
A.
,
Linga
,
H.
,
Sangesland
,
S.
,
Gyland
,
K. R.
, and
Kawaji
,
M.
,
2021
, “
Laboratory Evaluation of Static and Dynamic Sag in Oil-Based Drilling Fluids
,”
SPE J.
,
26
(
3
), pp.
1072
1091
, Paper No. SPE-199567-PA.
23.
Ofei
,
T. N.
,
Lund
,
B.
, and
Saasen
,
A.
,
2021
, “
Effect of Particle Number Density on Rheological Properties and Barite Sag in Oil-Based Drilling Fluids
,”
J. Pet. Sci. Eng.
,
206
, p.
108908
.
24.
Coulter
,
L. S.
,
2011
,
Product Manual
, Beckman Coulter Inc., https://www.beckmancoulter.com/wsrportal/techdocs?docname=4237214EA.pdf
25.
International Organization for Standardization
,
2008
, “
Petroleum and Natural Gas Industries—Drilling Fluid Materials—Specifications and Tests
,”
International Organization for Standardization
,
Geneva
, Report No. ISO 13500.
26.
Mezger
,
T. G.
,
2014
,
The Rheology Handbook
, 4th ed.,
Vincentz Network
,
Hannover, Germany
.
27.
Hold
,
S.
,
2015
, “
The Very Basics of Density Measurement Methods
,”
Anton Paar Blog
, https://blog.anton-paar.com/the-very-basics-of-density-measurement, Accessed October 20, 2019
28.
Herschel
,
W. H.
, and
Bulkley
,
R.
,
1926
, “
Konsistenz-Messungen von Gummibenzöllösungen
,”
Kolloid Z.
,
39
(
4
), pp.
291
300
.
29.
Zamora
,
M.
, and
Power
,
D.
,
2002
, “
Making a Case for AADE Hydraulics and the Unified Rheological Model
,”
Presented at the AADE Technology Conference Drilling & Completion Fluids and Waste Management
,
Houston, TX
,
Apr. 2–3
, Paper No. AADE-02-DFWM-HO-13.
30.
Alvi
,
M. A. A.
,
Belayneh
,
M.
,
Fjelde
,
K. K.
,
Saasen
,
A.
, and
Bandyopadhyay
,
S.
,
2020
, “
Effect of Hydrophobic Iron Oxide Nanoparticles on the Properties of Oil-Based Drilling Fluids
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
043001
.
31.
Saasen
,
A.
, and
Ytrehus
,
J. D.
,
2018
, “
Rheological Properties of Drilling Fluids—Use of Dimensionless Shear Rates in Herschel-Bulkley Models and Power-Law Models
,”
Appl. Rheol.
,
28
(
5
), p.
54515
.
32.
Saasen
,
A.
,
Ytrehus
,
J. D.
, and
Lund
,
B.
,
2021
, “
Annular Frictional Pressure Losses for Drilling Fluids
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
053201
.
33.
Dinkgreve
,
M.
,
Paredes
,
J.
,
Denn
,
M. M.
, and
Bonn
,
D.
,
2016
, “
On Different Ways of Measuring “the” Yield Stress
,”
J. Non-Newtonian Fluid Mech.
,
238
, pp.
233
241
.
34.
Douglas
,
J. F.
,
2018
, “
Weak and Strong Gels and the Emergence of the Amorphous Solid State
,”
Gels
,
4
(
19
), pp.
1
14
.
You do not currently have access to this content.