Abstract

Renewable energy production is limited by the fluctuations limiting their application. Underground hydrogen storage (UHS) is one possible alternative to reduce the gap between supply and demand by storing the energy converted to hydrogen as a carrier and store it during surplus to produce it during high demand periods. The hydrogen is stored in the subsurface in geological formations containing the gas and is injected/produced via wells. There is a lack of experience associated with this technology and only a small number of projects worldwide. There are several mechanisms that can compromise the integrity of the well and generate leakage of the stored gas. This paper aims to introduce the challenges associated with well integrity of UHS. Mechanisms that can compromise well integrity and generate leaks include microbial corrosion, hydrogen blistering hydrogen-induced cracking and hydrogen embrittlement, cement degradation, elastomer failure, and caprock sealing failure. Propose well completion criteria, recommendation, and materials selection for newly constructed wells or existing wells. A comparison with more developed storage technologies aims to provide a better understanding of the limitations of hydrogen storage by comparing it to carbon dioxide (carbon capture and storage) and methane (underground gas storage). Finally, evaluation and monitoring techniques are required to see the influence of hydrogen on well integrity. Future research and development will reduce the uncertainties and limitations associated with UHS increasing its feasibility and implementation.

References

1.
EIA
,
2020
,
Monthly Energy Review
,
U.S. Energy Information Administration
,
Washington, DC.
2.
Fronk
,
B. M.
,
Neal
,
R.
, and
Garimella
,
S.
,
2010
, “
Evolution of the Transition to a World Driven by Renewable Energy
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021009
.
3.
Benato
,
A.
, and
Stoppato
,
A.
,
2017
, “
Energy and Cost Analysis of a New Packed Bed Pumped Thermal Electricity Storage Unit
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020904
.
4.
Câmara
,
R. J. B.
,
Carneiro
,
J. F.
,
Câmara
,
G. A. B.
,
de Araújo
,
P. S. R.
,
Rocha
,
P. S. D. M. V.
, and
Andrade
,
J. C. S.
,
2019
, “
Methodology for Sub-commercial Calculation of the Potential Energy Storage Capacity of Hydrogen, Natural Gas, and Compressed Air in Salt Caves
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042007
.
5.
Shang
,
D.
,
Pei
,
P.
, and
Zuo
,
Y.
,
2020
, “
Techno-Economic Feasibility Analysis of Pumped Storage Hydroelectricity in Abandoned Underground Coal Mines
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122001
.
6.
Sharan
,
P.
,
Kitz
,
K.
,
Wendt
,
D.
,
McTigue
,
J.
, and
Zhu
,
G.
,
2020
, “
Using Concentrating Solar Power to Create a Geological Thermal Energy Reservoir for Seasonal Storage and Flexible Power Plant Operation
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
010906
.
7.
Das
,
D.
, and
Veziroǧlu
,
T. N.
,
2001
, “
Hydrogen Production by Biological Processes: A Survey of Literature
,”
Int. J. Hydrogen Energy
,
26
(
1
), pp.
13
28
.
8.
Wang
,
Z.
,
Roberts
,
R. R.
,
Naterer
,
G. F.
, and
Gabriel
,
K. S.
,
2012
, “
Comparison of Thermochemical, Electrolytic, Photoelectrolytic and Photochemical Solar-to-Hydrogen Production Technologies
,”
Int. J. Hydrogen Energy
,
37
(
21
), pp.
16287
16301
.
9.
Shahid
,
M.
,
Bidin
,
N.
,
Mat
,
Y.
, and
Ullah
,
M. I.
,
2012
, “
Production and Enhancement of Hydrogen From Water: A Review
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
034002
.
10.
McPherson
,
M.
,
Johnson
,
N.
, and
Strubegger
,
M.
,
2018
, “
The Role of Electricity Storage and Hydrogen Technologies in Enabling Global Low-Carbon Energy Transitions
,”
Appl. Energy
,
216
, pp.
649
661
.
11.
Reuß
,
M.
,
Grube
,
T.
,
Robinius
,
M.
,
Preuster
,
P.
,
Wasserscheid
,
P.
, and
Stolten
,
D.
,
2017
, “
Seasonal Storage and Alternative Carriers: A Flexible Hydrogen Supply Chain Model
,”
Appl. Energy
,
200
, pp.
290
302
.
12.
Taylor
,
J. B.
,
Alderson
,
J. E. A.
,
Kalyanam
,
K. M.
,
Lyle
,
A. B.
, and
Phillips
,
L. A.
,
1986
, “
Technical and Economic Assessment of Methods for the Storage of Large Quantities of Hydrogen
,”
Int. J. Hydrogen Energy
,
11
(
1
), pp.
5
22
.
13.
Tarkowski
,
R.
,
2019
, “
Underground Hydrogen Storage: Characteristics and Prospects
,”
Renew. Sustain. Energy Rev.
,
105
, pp.
86
94
.
14.
Kabuth
,
A.
,
Dahmke
,
A.
,
Beyer
,
C.
,
Bilke
,
L.
,
Dethlefsen
,
F.
,
Dietrich
,
P.
,
Duttmann
,
R.
, et al
,
2017
, “
Energy Storage in the Geological Subsurface: Dimensioning, Risk Analysis and Spatial Planning: The ANGUS+ Project
,”
Environ. Earth Sci.
,
76
(
1
), p.
23
.
15.
Pudlo
,
D.
,
Ganzer
,
L.
,
Henkel
,
S.
,
Kühn
,
M.
,
Liebscher
,
A.
,
De Lucia
,
M.
,
Panfilov
,
M.
, et al
,
2013
, “
The H2STORE Project: Hydrogen Underground Storage—A Feasible Way in Storing Electrical Power in Geological Media?
Proceedings of the Clean Energy Systems in the Subsurface: Production, Storage and Conversion
,
Berlin, Germany
,
May 21–23
, Springer Series in Geomechanics and Geoengineering, Berlin, pp.
395
412
.
16.
Pudlo
,
D.
, and
Henkel
,
S.
,
2016
, “
H2STORE and HyINTEGER—Studies on the Effect of Hydrogen Storage in (PORE) Underground Gas Reservoirs—An Overview
,”
Proceedings of the 3rd HIPS-NET Workshop
,
Brussels, Belgium
,
June 23–24
, p.
13
.
17.
Simon
,
J.
,
Ferriz
,
A. M.
, and
Correas
,
L. C.
,
2015
, “
HyUnder—Hydrogen Underground Storage at Large Scale: Case Study Spain
,”
Energy Procedia
,
73
, pp.
136
144
.
18.
RAG Austria
,
2020
, “
Underground Sun Storage Final Report
,” 2017.
19.
ISO 16530-1
,
2017
, “
Petroleum and Natural Gas Industries—Well Integrity—Part 1: Life Cycle Governance
.”
20.
NORSOK D-010
,
2013
, “
Well Integrity in Drilling and Well Operations
,” October 2010.
21.
Kiran
,
R.
,
Teodoriu
,
C.
,
Dadmohammadi
,
Y.
,
Nygaard
,
R.
,
Wood
,
D.
,
Mokhtari
,
M.
, and
Salehi
,
S.
,
2017
, “
Identification and Evaluation of Well Integrity and Causes of Failure of Well Integrity Barriers (A Review)
,”
J. Nat. Gas Sci. Eng.
,
45
, pp.
511
526
.
22.
Loto
,
C. A.
,
2017
, “
Microbiological Corrosion: Mechanism, Control and Impact—A Review
,”
Int. J. Adv. Manuf. Technol.
,
92
(
9–12
), pp.
4241
4252
.
23.
Iverson
,
W. P.
,
1987
, “
Microbial Corrosion of Metals
,”
Adv. Appl. Microbiol.
,
32
, pp.
1
36
.
24.
Boopathy
,
R.
, and
Daniels
,
L.
,
1991
, “
Effect of pH on Anaerobic Mild Steel Corrosion by Methanogenic Bacteria
,”
Appl. Environ. Microbiol.
,
57
(
7
), pp.
2104
2108
.
25.
Rickard
,
D.
,
2012
, “
Sedimentary Iron Biogeochemistry
,”
Dev. Sedimentol.
,
65
, pp.
85
119
.
26.
Lovley
,
D. R.
, and
Phillips
,
E. J. P.
,
1986
, “
Organic-Matter Mineralization With Reduction of Ferric Iron in Anaerobic Sediments
,”
Appl. Environ. Microbiol.
,
51
(
4
), pp.
683
689
.
27.
Condon
,
J. B.
, and
Schober
,
T.
,
1993
, “
Hydrogen Bubbles in Metals
,”
J. Nucl. Mater.
,
207
, pp.
1
24
.
28.
Reitenbach
,
V.
,
Ganzer
,
L.
,
Albrecht
,
D.
, and
Hagemann
,
B.
,
2015
, “
Influence of Added Hydrogen on Underground Gas Storage: A Review of Key Issues
,”
Environ. Earth Sci.
,
73
(
11
), pp.
6927
6693
.
29.
Ghosh
,
G.
,
Rostron
,
P.
,
Garg
,
R.
, and
Panday
,
A.
,
2018
, “
Hydrogen Induced Cracking of Pipeline and Pressure Vessel Steels: A Review
,”
Eng. Fract. Mech.
,
199
, pp.
609
618
.
30.
Edyvean
,
R. G. J.
,
Benson
,
J.
,
Thomas
,
C. J.
,
Beech
,
I. B.
, and
Videla
,
H. A.
,
1997
, “
Biological Influences on Hydrogen Effects in Steel in Seawater
,”
Corrosion97
,
New Orleans, LA
,
Mar. 9
, p.
206
.
31.
Strazisar
,
B.
,
Kutchko
,
B.
, and
Huerta
,
N.
,
2009
, “
Chemical Reactions of Wellbore Cement Under CO2 Storage Conditions: Effects of Cement Additives
,”
Energy Procedia
,
1
(
1
), pp.
3603
3607
.
32.
Lécolier
,
E.
,
Rivereau
,
A.
,
Ferrer
,
N.
,
Audibert
,
A.
, and
Longaygue
,
X.
,
2010
, “
Durability of Oilwell Cement Formulations Aged in H2S-Containing Fluids
,”
SPE Drill. Completion
,
25
(
1
), pp.
90
95
.
33.
Santra
,
A.
,
Reddy
,
B. R.
,
Liang
,
F.
, and
Fitzgerald
,
R.
,
2009
, “
Reaction of CO2 With Portland Cement at Down-Hole Conditions and the Role of Pozzolanic Supplements
,”
Proceedings of the SPE International Symposium on Oilfield Chemistry
,
Woodlands, TX,
,
Apr. 20–22
, p. 121103.
34.
Teodoriu
,
C.
,
Reinicke
,
K. M.
,
Fichter
,
C.
,
Wehling
,
P.
, and
Clausthal
,
T. U.
,
2010
, “
Investigations on Casing-Cement Interaction With Application to Gas and CO2 Storage Wells
,”
Proceedings of the SPE EUROPEC/EAGE Annual Conference and Exhibition
,
Barcelona, Spain
,
June 14
.
35.
Kutchko Duguid
,
A.
, and
Scherer
,
G.
,
2010
, “
Degradation of Oilwell Cement Due to Exposure to Carbonated Brine
,”
Int. J. Greenhouse Gas Control
,
4
(
3
), pp.
546
560
.
36.
Kutchko
,
B. G.
,
Strazisar
,
B. R.
,
Hawthorne
,
S. B.
,
Lopano
,
C. L.
,
Miller
,
D. J.
,
Hakala
,
A.
, and
Guthrie
,
G. D.
,
2011
, “
H2S–CO2 Reaction With Hydrated Class H Well Cement: Acid-Gas Injection and CO2 Co-sequestration
,”
Int. J. Greenhouse Gas Control
,
5
(
4
), pp.
880
888
.
37.
Collepardi
,
M.
,
2003
, “
A State-of-the-Art Review on Delayed Ettringite Attack on Concrete
,”
Cem. Concr. Compos.
,
25
(
1–5
), pp.
401
407
.
38.
Truche
,
L.
,
Jodin-Caumon
,
M. C.
,
Lerouge
,
C.
,
Berger
,
G.
,
Mosser-Ruck
,
R.
,
Giffaut
,
E.
, and
Michau
,
N.
,
2013
, “
Sulphide Mineral Reactions in Clay-Rich Rock Induced by High Hydrogen Pressure. Application to Disturbed or Natural Settings up to 250 °C and 30 bar
,”
Chem. Geol.
,
351
, pp.
217
228
.
39.
Patel
,
H.
,
Salehi
,
S.
,
Ahmed
,
R.
, and
Teodoriu
,
C.
,
2019
, “
Review of Elastomer Seal Assemblies in Oil & Gas Wells: Performance T Evaluation, Failure Mechanisms, and Gaps in Industry Standards
,”
J. Pet. Sci. Eng.
,
179
, pp.
1046
1062
.
40.
Campion
,
R. P.
,
Thomson
,
B.
, and
Harris
,
J. A.
,
2005
, “
Elastomers for Fluid Containment in Offshore Oil and Gas Production: Guidelines and Review
,”
Technical Report No. RR-320, MERL Ltd for the Health and Safety Executive, UK
.
41.
Salehi
,
S.
,
Ezeakacha
,
C. P.
,
Kwatia
,
G.
, and
Ahmed
,
R.
,
2019
, “
Performance Verification of Elastomer Materials in Corrosive Gas and Liquid Condition
,”
Polym. Test.
,
75
, pp.
48
63
.
42.
Fernández
,
C.
, and
Castaño
,
P.
,
2016
, “
Compatibility Behavior of Elastomers for PCP Applications
,”
CORROSION 2016
,
NACE International
,
Vancouver, British Columbia
, NACE-2016-7106.
43.
Dajiang
,
Z.
,
Yuanhua
,
L.
,
Huali
,
Z.
,
Yufei
,
L.
,
Lin
,
Z.
, and
Kuanhai
,
D.
,
2017
, “
Experimental Studies on CO2 Corrosion of Rubber Materials for Packer Under Compressive Stress in Gas Wells
,”
Eng. Failure Anal.
,
80
, pp.
11
23
.
44.
Amid
,
A.
,
Mignard
,
D.
, and
Wilkinson
,
M.
,
2016
, “
Seasonal Storage of Hydrogen in a Depleted Natural Gas Reservoir
,”
Int. J. Hydrogen Energy
,
41
(
12
), pp.
5549
5558
.
45.
Carden
,
P. O.
, and
Paterson
,
L.
,
1979
, “
Physical, Chemical and Energy Aspects of Underground Hydrogen Storage
,”
Int. J. Hydrogen Energy
,
4
(
6
), pp.
559
569
.
46.
Zivar
,
D.
,
Kumar
,
S.
, and
Foroozesh
,
J.
,
2020
, “
Underground Hydrogen Storage: A Comprehensive Review
,”
Int. J. Hydrogen Energy.
,
46
(
45
),
23436
23462
.
47.
Heinemann
,
N.
,
Booth
,
M. G.
,
Haszeldine
,
R. S.
,
Wilkinson
,
M.
,
Scafidi
,
J.
, and
Edlmann
,
K.
,
2018
, “
Hydrogen Storage in Porous Geological Formations—Onshore Play Opportunities in the Midland Valley (Scotland, UK)
,”
Int. J. Hydrogen Energy
,
43
(
45
), pp.
20861
20874
.
48.
Hemme
,
C.
, and
Van Berk
,
W.
,
2018
, “
Hydrogeochemical Modeling to Identify Potential Risks of Underground Hydrogen Storage in Depleted Gas Fields
,”
Appl. Sci.
,
8
(
11
), p.
2282
.
49.
Shi
,
Z.
,
Jessen
,
K.
, and
Tsotsis
,
T. T.
,
2020
, “
Impacts of the Subsurface Storage of Natural Gas and Hydrogen Mixtures
,”
Int. J. Hydrogen Energy
,
45
(
15
), pp.
8757
8773
.
50.
Lord
,
A. S.
,
Kobos
,
P. H.
, and
Borns
,
D. J.
,
2014
, “
Geologic Storage of Hydrogen: Scaling Up To Meet City Transportation Demands
,”
Int. J. Hydrogen Energy
,
39
(
28
), pp.
15570
15582
.
51.
Michalski
,
J.
,
Bünger
,
U.
,
Crotogino
,
F.
,
Donadei
,
S.
,
Schneider
,
G. S.
,
Pregger
,
T.
,
Cao
,
K. K.
, and
Heide
,
D.
,
2017
, “
Hydrogen Generation by Electrolysis and Storage in Salt Caverns: Potentials, Economics and Systems Aspects With Regard to the German Energy Transition
,”
Int. J. Hydrogen Energy
,
42
(
19
), pp.
13427
13443
.
52.
Sainz-Garcia
,
A.
,
Abarca
,
E.
,
Rubi
,
V.
, and
Grandia
,
F.
,
2017
, “
Assessment of Feasible Strategies for Seasonal Underground Hydrogen Storage in a Saline Aquifer
,”
Int. J. Hydrogen Energy
,
42
(
26
), pp.
16657
16666
.
53.
Hirata
,
K.
,
Iikubo
,
S.
,
Koyama
,
M.
,
Tsuzaki
,
K.
, and
Ohtani
,
H.
,
2018
, “
First-Principles Study on Hydrogen Diffusivity in BCC, FCC, and HCP Iron
,”
Metall. Mater. Trans. A
,
49
(
10
), pp.
5015
5022
.
54.
San Marchi
,
C.
,
Somerday
,
B. P.
,
Tang
,
X.
, and
Schiroky
,
G. H.
,
2008
, “
Effects of Alloy Composition and Strain Hardening on Tensile Fracture of Hydrogen-Precharged Type 316 Stainless Steels
,”
Int. J. Hydrogen Energy
,
33
(
2
), pp.
889
904
.
55.
Bai
,
M.
,
Song
,
K.
,
Sun
,
Y.
,
He
,
M.
,
Li
,
Y.
, and
Sun
,
J.
,
2014
, “
An Overview of Hydrogen Underground Storage Technology and Prospects in China
,”
J. Pet. Sci. Eng.
,
124
, pp.
132
136
.
56.
Bai
,
M.
,
Sun
,
J.
,
Song
,
K.
,
Li
,
L.
, and
Qiao
,
Z.
,
2015
, “
Well Completion and Integrity Evaluation for CO2 Injection Wells
,”
Renew. Sustain. Energy Rev.
,
45
, pp.
556
564
.
57.
Crotogino
,
F.
,
1995
, “
SMRI Reference for External Well Mechanical Integrity Testing/Performance, Data Evaluation and Assessment
,”
Proceedings of the SMRI Spring Meeting Houston
,
Houston, TX
.
58.
Jones
,
R. R.
, and
Carpenter
,
R. B.
,
1991
, “
New Latex, Expanding Thixotropic Cement Systems Improve Job Performance and Reduce Costs
,”
Proceedings of the International Symposium on Oilfield Chemistry
,
Anaheim, CA
,
Feb. 20–22
.
59.
Nygaard
,
R.
, and
Lavoie
,
R.
,
2010
, “
Well Integrity and Workover Candidates for Existing Wells in the Wabamun Area CO2 Sequestration Project (WASP)
,”
Proceedings of the Canadian Unconventional Resources and International Petroleum Conference
,
Calgary, Alberta
,
Oct. 19–21
.
60.
Zhong
,
A.
,
Johnson
,
M.
,
Kohn
,
G.
, and
Saleh
,
M.
,
2015
, “
Performance Evaluation of a Large Bore Expandable Liner Hanger for Field Operations in the Gulf of Mexico
,”
Proceedings of the Offshore Technology Conference
,
Houston, TX
,
May 4–7
.
61.
Ahmed
,
S.
,
Patel
,
H.
, and
Salehi
,
S.
,
2020
, “
Numerical Modeling and Experimental Study of Elastomer Seal Assembly in Downhole Wellbore Equipment: Effect of Material and Chemical Swelling
,”
Polym. Test.
,
89
, p.
106608
.
62.
Ottesen
,
S.
, and
Kwakwa
,
K. A.
,
1991
, “
A Multidisciplinary Approach to In-Situ Stress Determination and Its Application to Wellbore Stability Analysis
,”
Proceedings of the SPE/IADC Drilling Conference
,
Amsterdam, The Netherlands
,
Mar. 11–14
.
63.
Hollis
,
A. P.
,
1984
, “
Some Petroleum Engineering Considerations in the Changeover of the Rough Gas Field to the Storage Mode
,”
J. Pet. Technol.
,
36
(
5
), pp.
797
804
.
64.
Pfeiffer
,
W. T.
, and
Bauer
,
S.
,
2015
, “
Subsurface Porous Media Hydrogen Storage—Scenario Development and Simulation
,”
Energy Procedia
,
76
, pp.
565
572
.
65.
King
,
G. E.
, and
Valencia
,
R. T.
,
2014
, “
Environmental Risk and Well Integrity of Plugged and Abandoned Wells
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Amsterdam, The Netherlands
,
Oct. 27–29
.
66.
Loizzo
,
M.
, and
Sharma
,
S.
,
2008
, “
Assessing Long-Term CO2 Containment Performance: Cement Evaluation in Otway CRC-1
,”
Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition
,
Perth, Australia
,
Oct. 20–22
.
67.
Lockyear
,
C. F.
,
Ryan
,
D. F.
, and
Gunningham
,
M. M.
,
1990
, “
Cement Channeling: How to Predict and Prevent
,”
SPE Drill. Eng.
,
5
(
3
), pp.
201
208
.
68.
Thiercelin
,
M. J.
,
Dargaud
,
B.
,
Baret
,
J. F.
, and
Rodriquez
,
W. J.
,
1998
, “
Cement Design Based on Cement Mechanical Response
,”
SPE Drill. Completion
,
13
(
4
), pp.
266
273
.
69.
Mainguy
,
M.
,
Longuemare
,
P.
,
Audibert
,
A.
, and
Lecolier
,
E.
,
2007
, “
Analyzing the Risk or Well Plug Failure After Abandonment
,”
Oil Gas Sci. Technol.
,
62
(
3
), pp.
311
324
.
70.
Bai
,
M.
,
Zhang
,
Z.
, and
Fu
,
X.
,
2016
, “
A Review on Well Integrity Issues for CO2 Geological Storage and Enhanced Gas Recovery
,”
Renew. Sustain. Energy Rev.
,
59
, pp.
920
926
.
71.
Edlmann
,
K.
,
Bensabat
,
J.
,
Niemi
,
A.
,
Haszeldine
,
R. S.
, and
McDermott
,
C. I.
,
2016
, “
Lessons Learned From Using Expert Elicitation to Identify, Assess and Rank the Potential Leakage Scenarios at the Heletz Pilot CO2 Injection Site
,”
Int. J. Greenhouse Gas Control
,
49
, pp.
473
487
.
72.
Kleinitz
,
W.
, and
Boehling
,
E.
,
2005
, “
Underground Gas Storage in Porous Media—Operating Experience With Bacteria on Gas Quality
,”
Proceedings of the SPE Europec/EAGE Annual Conference
,
Madrid, Spain
,
June 13–16
.
73.
Barlet-Gouedard
,
V.
,
Rimmele
,
G.
,
Goffe
,
B.
, and
Porcherie
,
O.
,
2006
, “
Mitigation Strategies for the Risk of CO2 Migration Through Wellbores
,”
Proceedings of the IADC/SPE Drilling Conference
,
Miami, FL
,
Feb. 21–23
.
74.
Ahmed
,
S.
,
Salehi
,
S.
,
Ezeakacha
,
C.
, and
Teodoriu
,
C.
,
2019
, “
Experimental Investigation of Elastomers in Downhole Seal Elements: Implications for Safety
,”
Polym. Test.
,
76
, pp.
350
364
.
75.
Alaref
,
O.
,
Rourke
,
M.
,
Khabibullin
,
M.
, and
Yakupov
,
A.
,
2016
, “
Comprehensive Well Integrity Solutions in Challenging Environments Using Latest Technology Innovations
,”
Proceedings of the Offshore Technology Conference Asia
,
Kuala Lumpur, Malaysia
,
Mar. 22–25
.
76.
van Kuijk
,
R.
,
Zeroug
,
S.
,
Froelich
,
B.
,
Allouche
,
M.
,
Bose
,
S.
,
Miller
,
D.
,
Le Calvez
,
J. L.
,
Schoepf
,
V.
, and
Pagnin
,
A.
,
2005
, “
A Novel Ultrasonic Cased-Hole Imager for Enhanced Cement Evaluation
,”
Proceedings of the International Petroleum Technology Conference
,
Doha, Qatar
,
Nov. 21–23
.
77.
de Souza
,
P. C.
,
Solon
,
T.
, and
da Silva Araujo
,
R. G.
,
1997
, “
New Approach on Cement Evaluation for Oil and Gas Reservoirs Using Ultrasonic Images
,”
Proceedings of the Latin American and Caribbean Petroleum Engineering Conference
,
Rio de Janeiro, Brazil
,
Aug. 30–Sept. 3
.
You do not currently have access to this content.