Abstract

Machine learning (ML) models can accelerate the development of efficient internal combustion engines. This study assessed the feasibility of data-driven methods toward predicting the performance of a diesel engine modified to natural gas (NG) spark ignition (SI), based on a limited number of experiments. As the best ML technique cannot be chosen a priori, the applicability of different ML algorithms for such an engine application was evaluated. Specifically, the performance of two widely used ML algorithms, the random forest (RF) and the artificial neural network (ANN), in forecasting engine responses related to in-cylinder combustion phenomena was compared. The results indicated that both algorithms with spark timing (ST), mixture equivalence ratio, and engine speed as model inputs produced acceptable results with respect to predicting engine performance, combustion phasing, and engine-out emissions. Despite requiring more effort in hyperparameter optimization, the ANN model performed better than the RF model, especially for engine emissions, as evidenced by the larger R-squared, smaller root-mean-square errors (RMSEs), and more realistic predictions of the effects of key engine control variables on the engine performance. However, in applications where the combustion behavior knowledge is limited, it is recommended to use a RF model to quickly determine the appropriate number of model inputs. Consequently, using the RF model to define the model structure and then using the ANN model to improve the model’s predictive capability can help to rapidly build data-driven engine combustion models.

References

1.
Deng
,
J.
,
Wang
,
X.
,
Wei
,
Z.
,
Wang
,
L.
,
Wang
,
C.
, and
Chen
,
Z.
,
2020
, “
A Review of NOx and SOx Emission Reduction Technologies for Marine Diesel Engines and the Potential Evaluation of Liquefied Natural Gas Fuelled Vessels
,”
Sci. Total Environ.
,
766
, p.
144319
.
2.
Langness
,
C.
,
Mattson
,
J.
, and
Depcik
,
C.
,
2017
, “
Moderate Substitution of Varying Compressed Natural Gas Constituents for Assisted Diesel Combustion
,”
Combust. Sci. Technol.
,
189
(
8
), pp.
1354
1372
.
3.
Li
,
H.
,
Liu
,
S.
,
Liew
,
C.
,
Gatts
,
T.
,
Wayne
,
S.
,
Clark
,
N.
, and
Nuszkowski
,
J.
,
2018
, “
An Investigation of the Combustion Process of a Heavy-Duty Natural Gas-Diesel Dual Fuel Engine
,”
ASME J. Eng. Gas Turbines Power.
,
140
(
9
), p.
091502
.
4.
Luo
,
Q.
,
Hu
,
J.
,
Sun
,
B.
,
Liu
,
F.
,
Wang
,
X.
,
Li
,
C.
, and
Bao
,
L.
,
2019
, “
Effect of Equivalence Ratios on the Power, Combustion Stability and NOx Controlling Strategy for the Turbocharged Hydrogen Engine at Low Engine Speeds
,”
Int. J. Hydrogen Energy.
,
44
(
31
), pp.
17095
17102
.
5.
Guan
,
J.
,
Li
,
Y.
,
Liu
,
J.
,
Duan
,
X.
,
Shen
,
D.
,
Jia
,
D.
, and
Ku
,
C.
,
2021
, “
Experimental and Numerical Research on the Performance Characteristics of OPLVCR Engine Based on the NSGA II Algorithm Using Digital Twins
,”
Energy Conversion Manage.
,
236
(
1
), p.
114052
.
6.
Luo
,
K.
,
Shao
,
C.
,
Chai
,
M.
, and
Fan
,
J.
,
2019
, “
Level Set Method for Atomization and Evaporation Simulations
,”
Prog. Energy Combust. Sci.
,
73
(
1
), pp.
65
94
.
7.
Chai
,
M.
,
Luo
,
K.
,
Shao
,
C.
, and
Fan
,
J.
,
2017
, “
An Efficient Level Set Remedy Approach for Simulations of Two-Phase Flow Based on Sigmoid Function
,”
Chem. Eng. Sci.
,
172
(
1
), pp.
335
352
.
8.
Hu
,
S.
,
Wang
,
H.
,
Yang
,
C.
, and
Wang
,
Y.
,
2017
, “
Burnt Fraction Sensitivity Analysis and 0-D Modelling of Common Rail Diesel Engine Using Wiebe Function
,”
Appl. Thermal Eng.
,
115
(
1
), pp.
170
177
.
9.
Liu
,
J.
,
Ulishney
,
C. J.
, and
Dumitrescu
,
C. E.
,
2021
, “
Effect of Spark Timing on the Combustion Stages Seen in a Heavy-Duty Compression-Ignition Engine Retrofitted to Natural Gas Spark-Ignition Operation
,”
SAE Int. J. Eng.
,
14
(
3
), pp.
335
344
.
10.
Zhao
,
F.
,
Hung
,
D. L. S.
, and
Wu
,
S.
,
2020
, “
K-means Clustering-Driven Detection of Time-Resolved Vortex Patterns and Cyclic Variations Inside a Direct Injection Engine
,”
Appl. Thermal Eng.
,
180
(
1
), p.
115810
.
11.
Mishra
,
C.
, and
Subbarao
,
P. M. V.
,
2021
, “
Machine Learning Integration With Combustion Physics to Develop a Composite Predictive Model for Reactivity Controlled Compression Ignition Engine
,”
ASEM J. Energy Resour. Technol.
,
144
(
4
), p.
042302
.
12.
Togun
,
N.
, and
Baysec
,
S.
,
2016
, “
Nonlinear Identification of a Spark Ignition Engine Torque Based on ANFIS With NARX Method
,”
Expert Syst.
,
33
(
6
), pp.
559
568
.
13.
Liu
,
J.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2020
, “
Random Forest Machine Learning Model for Predicting Combustion Feedback Information of a Natural Gas Spark Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012301
.
14.
Liu
,
J.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2020
, “
Application of Random Forest Machine Learning Models to Forecast Combustion Profile Parameters of a Natural Gas Spark Ignition Engine
,”
International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers
, IMECE2020-23973.
15.
Kodavasal
,
J.
,
Abdul Moiz
,
A.
,
Ameen
,
M.
, and
Som
,
S.
,
2018
, “
Using Machine Learning to Analyze Factors Determining Cycle-to-Cycle Variation in a Spark-Ignited Gasoline Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102204
.
16.
Hanuschkin
,
A.
,
Zündorf
,
S.
,
Schmidt
,
M.
,
Welch
,
C.
,
Schorr
,
J.
,
Peters
,
S.
,
Dreizler
,
A.
, and
Böhm
,
B.
,
2021
, “
Investigation of Cycle-to-Cycle Variations in a Spark-Ignition Engine Based on a Machine Learning Analysis of the Early Flame Kernel
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5751
5759
.
17.
Sharma
,
A.
,
Sugumaran
,
V.
, and
Devasenapati
,
S. B.
,
2014
, “
Misfire Detection in an IC Engine Using Vibration Signal and Decision Tree Algorithms
,”
Measurement
,
50
(
1
), pp.
370
380
.
18.
Ricordeau
,
J.
, and
Lacaille
,
J.
,
2010
, “
Application of Random Forests to Engine Health Monitoring
,”
27th International Congress of the Aeronautical Sciences
,
Nice, France
,
Sept. 19–24
, Paper ICAS 2010-10.10.5.
19.
Wang
,
X.
, and
Han
,
B.
,
2017
, “
Research on Fault Pattern Analysis of Marine Diesel Engine Based on Random Forest Algorithm
,”
4th International Conference on Transportation Information and Safety. Institute of Electrical and Electronics Engineers
,
Banff, Alberta, Canada
,
Aug. 8–10
, pp.
312
318
.
20.
Saraswati
,
S.
, and
Chand
,
S.
,
2010
, “
Reconstruction of Cylinder Pressure for SI Engine Using Recurrent Neural Network
,”
Neural Comput. Appl.
,
19
(
6
), pp.
935
944
.
21.
Parlak
,
A.
,
Islamoglu
,
Y.
,
Yasar
,
H.
, and
Egrisogut
,
A.
,
2006
, “
Application of Artificial Neural Network to Predict Specific Fuel Consumption and Exhaust Temperature for a Diesel Engine
,”
Appl. Thermal Eng.
,
26
(
8–9
), pp.
824
828
.
22.
Di Mauro
,
A.
,
Chen
,
H.
, and
Sick
,
V.
,
2019
, “
Neural Network Prediction of Cycle-to-Cycle Power Variability in a Spark-Ignited Internal Combustion Engine
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4937
4944
.
23.
Togun
,
N. K.
, and
Baysec
,
S.
,
2010
, “
Prediction of Torque and Specific Fuel Consumption of a Gasoline Engine by Using Artificial Neural Networks
,”
Appl. Energy
,
87
(
1
), pp.
349
355
.
24.
Brusca
,
S.
,
Lanzafame
,
R.
, and
Messina
,
M.
,
2005
,
Neural Network Application to Evaluate Thermodynamic Properties of ICE's Combustion Gases
. SAE Technical Paper. 2005-01-1128.
25.
Mohamed Ismail
,
H.
,
Ng
,
H. K.
,
Queck
,
C. W.
, and
Gan
,
S.
,
2012
, “
Artificial Neural Networks Modelling of Engine-Out Responses for a Light-Duty Diesel Engine Fueled With Biodiesel Blends
,”
Appl. Energy
,
92
(
1
), pp.
769
777
.
26.
Gasbarro
,
L.
,
Liu
,
J.
,
Ulishney
,
C.
,
Dumitrescu
,
C. E.
,
Ambrogi
,
L.
, and
Battistoni
,
M.
,
2019
, “
Development of the Control and Acquisition System for a Natural-Gas Spark-Ignition Engine Test Bench
,”
International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers
, IMECE2019-11485.
27.
Liu
,
J.
,
Dumitrescu
,
C. E.
,
Bommisetty
,
H.
, and
Ulishney
,
C.
,
2019
, “
Conversion of a Heavy-Duty Diesel Engine to Natural-Gas Spark-Ignition Operation: Test Bench Development
,”
International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers
, IMECE2019-10728.
28.
Togun
,
N.
, and
Baysec
,
S.
,
2010
, “
Genetic Programming Approach to Predict Torque and Brake Specific Fuel Consumption of a Gasoline Engine
,”
Appl. Energy
,
87
(
11
), pp.
3401
3408
.
29.
Duan
,
X.
,
Xu
,
Z.
,
Sun
,
X.
,
Deng
,
B.
, and
Liu
,
J.
,
2021
, “
Effects of Injection Timing and EGR on Combustion and Emissions Characteristics of the Diesel Engine Fueled With Acetone–Butanol–Ethanol/Diesel Blend Fuels
,”
Energy.
,
231
(
1
), p.
121069
.
30.
Padmanaban
,
V.
,
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Experimental Setup of Combustion Visualization Inside a Heavy-Duty Diesel Engine Converted to Natural-Gas Spark-Ignition Operation
,”
International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers
, IMECE2019-10735.
31.
Luo
,
Q.
, and
Sun
,
B.
,
2018
, “
Experiments on the Effect of Engine Speed, Load, Equivalence Ratio, Spark Timing and Coolant Temperature on the Energy Balance of a Turbocharged Hydrogen Engine
,”
Energy Conversion Manage.
,
162
(
1
), pp.
1
2
.
32.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
33.
Liu
,
J.
,
Huang
,
Q.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2021
, “
Machine Learning Assisted Prediction of Exhaust Gas Temperature of a Heavy-Duty Natural Gas Spark Ignition Engine
,”
Appl. Energy
,
300
(
1
), p.
117413
.
34.
Huang
,
Q.
,
Liu
,
J.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2021
, “
On the Use of Artificial Neural Networks to Model the Performance and Emissions of a Heavy-Duty Natural Gas Spark Ignition Engine
,”
Int. J. Engine Res.
OnlineFirst
), p.
14680874211034409
.
35.
Luo
,
Q. H.
, and
Sun
,
B. G.
,
2016
, “
Inducing Factors and Frequency of Combustion Knock in Hydrogen Internal Combustion Engines
,”
Int. J. Hydrogen Energy
,
41
(
36
), pp.
16296
16305
.
36.
Deh Kiani
,
M. K.
,
Ghobadian
,
B.
,
Tavakoli
,
T.
,
Nikbakht
,
A. M.
, and
Najafi
,
G.
,
2010
, “
Application of Artificial Neural Networks for the Prediction of Performance and Exhaust Emissions in SI Engine Using Ethanol-Gasoline Blends
,”
Energy
,
35
(
1
), pp.
65
69
.
37.
Pai
,
P. S.
, and
Rao
,
B. S.
,
2011
, “
Artificial Neural Network Based Prediction of Performance and Emission Characteristics of a Variable Compression Ratio CI Engine Using WCO as a Biodiesel at Different Injection Timings
,”
Appl. Energy
,
88
(
7
), pp.
2344
2354
.
38.
Piñeiro
,
G.
,
Perelman
,
S.
,
Guerschman
,
J. P.
, and
Paruelo
,
J. M.
,
2008
, “
How to Evaluate Models: Observed vs. Predicted or Predicted vs. Observed?
,”
Ecol. Modell.
,
216
(
3–4
), pp.
316
322
.
39.
Caton
,
J. A.
,
2014
, “
Combustion Phasing for Maximum Efficiency for Conventional and High Efficiency Engines
,”
Energy Conver. Manage.
,
77
(
1
), pp.
564
576
.
40.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Methodology to Separate the Two Burn Stages of Natural-Gas Lean Premixed-Combustion Inside a Diesel Geometry
,”
Energy Conver. Manage.
,
195
(
1
), pp.
21
31
.
41.
Duan
,
X.
,
Li
,
Y.
,
Liu
,
J.
,
Guo
,
G.
,
Fu
,
J.
,
Zhang
,
Q.
,
Zhang
,
S.
, and
Liu
,
W.
,
2019
, “
Experimental Study the Effects of Various Compression Ratios and Spark Timing on Performance and Emission of a Lean-Burn Heavy-Duty Spark Ignition Engine Fueled With Methane Gas and Hydrogen Blends
,”
Energy
,
169
(
1
), pp.
558
571
.
42.
He
,
X.
, and
Li
,
S.
,
1990
,
Combustion Science for Internal Combustion Engines
,
China Machine Press
,
Beijing, China
, pp.
446
453
.
43.
Badra
,
J. A.
,
Khaled
,
F.
,
Tang
,
M.
,
Pei
,
Y.
,
Kodavasal
,
J.
,
Pal
,
P.
,
Owoyele
,
O.
,
Fuetterer
,
C.
,
Mattia
,
B.
, and
Aamir
,
F.
,
2021
, “
Engine Combustion System Optimization Using Computational Fluid Dynamics and Machine Learning: A Methodological Approach
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022306
.
You do not currently have access to this content.