Abstract

A large number of oil wells have been or will be abandoned around the world. Yet, a very large amount of oil and energy is left behind inside the rocks in abandoned reservoirs because of technological and economic limitations. The residual oil saturation is usually more than 40%, and in shale reservoirs it can be more than 90%. There have been many enhanced oil recovery methods developed to tap the residual oil and improve the oil recovery. Interestingly, a concept has been proposed to transfer abandoned oil and gas reservoirs into exceptional enhanced geothermal reservoirs by oxidizing the residual oil with injected air (Li and Zhang, 2008, “Exceptional Enhanced Geothermal Systems From Oil and Gas Reservoirs,” 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA). This methodology was referred to as an exceptional enhanced geothermal system (EEGS). However, zero CO2 production has not been achieved during the process of EEGS. To this end, numerical models of EEGS in abandoned oil reservoirs configured with vertical wells were established in the present study. Numerical simulations in different well configurations were conducted. The effects of well distance, perforation position, and formation permeability on the CO2 production and the reservoir temperature have been investigated. The numerical simulation results showed that when the depth difference between the production and the injection well perforation positions reaches a specific value, the daily CO2 production rate could be kept at almost zero for over 50 years or even permanently while producing oil and thermal energy continuously. This implies that we realized the concept of EEGS with no CO2 successfully using numerical simulation.

References

1.
Flato
,
G.
,
Marotzke
,
J.
,
Abiodun
,
B.
,
Braconnot
,
P.
,
Chou
,
S. C.
,
Collins
,
W. J.
,
Cox
,
P.
,
Driouech
,
F.
,
Emori
,
S.
, and
Eyring
,
V.
,
2013
,
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
,
T. F.
Stocker
,
D.
Qin
,
G. K.
Plattner
,
M. M. B.
Tignor
,
S. K.
Allen
,
J.
Boschung
,
A.
Nauels
,
Y.
Xia
,
V.
Bex
, and
P. M.
Midgley
, eds.,
Cambridge University Press
,
New York
.
2.
Kang
,
C. A.
,
Brandt
,
A. R.
, and
Durlofsky
,
L. J.
,
2011
, “
Optimal Operation of an Integrated Energy System Including Fossil Fuel Power Generation, CO2 Capture and Wind
,”
Energy
,
36
(
12
), pp.
6806
6820
. 10.1016/j.energy.2011.10.015
3.
Herzog
,
H. J.
,
2011
, “
Scaling Up Carbon Dioxide Capture and Storage: From Megatons to Gigatons
,”
Energy Econ.
,
33
(
4
), pp.
597
604
. 10.1016/j.eneco.2010.11.004
4.
Shepherd
,
M.
,
2009
,
Oil Field Production Geology
,
AAPG Memoir
,
Tulsa, OK
, pp.
1
356
.
5.
Moore
,
R. G.
,
Laureshen
,
C. J.
,
Belgrave
,
J. D. M.
,
Ursenbach
,
M. G.
, and
(Raj) Mehta
,
S. A.
,
1995
, “
In Situ Combustion in Canadian Heavy Oil Reservoirs
,”
Fuel
,
74
(
8
), pp.
1169
1175
. 10.1016/0016-2361(95)00063-B
6.
Bazargan
,
M.
, and
Kovscek
,
A. R.
,
2017
, “
NonArrhenius Kinetics for Reactive Transport Simulations of In Situ Combustion
,”
J. Pet. Sci. Eng.
,
2017
(
157
), pp.
570
580
. 10.1016/j.petrol.2017.07.047
7.
Sawayama
,
K.
,
Li
,
K.
, and
Horne
,
R.
,
2019
, “
‘Leave the Carbon in the Ground’: In-Situ Combustion by Injecting Air Into Abandoned Shale Reservoirs
,”
International Symposium on Earth Science and Technology 2019
,
Kyushu, Japan
,
Dec. 5–6
.
8.
Schock
,
H.
,
Brereton
,
G.
,
Case
,
E.
,
D’Angelo
,
J.
,
Hogan
,
T.
,
Lyle
,
M.
,
Maloney
,
R.
,
Moran
,
K.
,
Novak
,
J.
,
Nelson
,
C.
,
Panayi
,
A.
,
Ruckle
,
T.
,
Sakamoto
,
J.
,
Shih
,
T.
,
Timm
,
E.
,
Zhang
,
L.
, and
Zhu
,
G.
,
2013
, “
Prospects for Implementation of Thermoelectric Generators as Waste Heat Recovery Systems in Class 8 Truck Applications
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
022001
. 10.1115/1.4023097
9.
Mokheimer
,
E. M. A.
,
Hamdy
,
M.
,
Abubakar
,
Z.
,
Shakeel
,
M. R.
,
Habib
,
M. A.
, and
Mahmoud
,
M.
,
2019
, “
A Comprehensive Review of Thermal Enhanced Oil Recovery: Techniques Evaluation
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
030801
. 10.1115/1.4041096
10.
Guo
,
K.
,
Li
,
H.
, and
Yu
,
Z.
,
2016
, “
In-Situ Heavy and Extra-Heavy Oil Recovery: A Review
,”
Fuel
,
185
, pp.
886
902
. 10.1016/j.fuel.2016.08.047
11.
Tester
,
J. W.
,
Anderson
,
B. J.
,
Batchelor
,
A. S.
,
Blackwell
,
D. D.
,
DiPippo
,
R.
,
Drake
,
E. M.
,
Garnish
,
J.
,
Livesay
,
B. J.
,
Moore
,
M. C.
,
Nichols
,
K.
,
Petty
,
S.
,
Taksoz
,
M. N.
, and
Veatch
,
R. W. J.
,
2006
, “
The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century
,”
Boston, MA
.
12.
Greaves
,
M.
,
Wilson
,
A.
,
Al-Honi
,
M.
, and
Lockett
,
A. D.
,
1996
, “
Improved Recovery of Light/Medium Heavy Oils in Heterogeneous Reservoirs Using Air Injection/Insitu Combustion (ISC)
,”
SPE Western Regional Meeting
,
Anchorage, AK
,
May 22–24
.
13.
Lore
,
J. S.
,
Eichhubl
,
P.
, and
Aydin
,
A.
,
2002
, “
Alteration and Fracturing of Siliceous Mudstone During In Situ Combustion, Orcutt Field, California
,”
J. Pet. Sci. Eng.
,
36
(
3–4
), pp.
169
182
. 10.1016/S0920-4105(02)00316-9
14.
Sharma
,
J.
,
Dean
,
J.
,
Aljaberi
,
F.
, and
Altememee
,
N.
,
2021
, “
In-Situ Combustion in Bellevue Field in Louisiana—History, Current State and Future Strategies
,”
Fuel
,
284
, p.
118992
. 10.1016/j.fuel.2020.118992
15.
Wang
,
Y.
,
Chen
,
Y.
, and
Li
,
S.
,
2000
, “
Experimental Study on Oil Displacement by In Situ Combustion
,”
Pet. Explor. Dev.
,
27
(
1
), pp.
69
71
.
16.
Yang
,
D.
,
Wang
,
S.
, and
Wang
,
M.
,
2003
, “
Laboratory Experiment on In-Situ Combustion
,”
J. Univ. Pet. China Nat. Sci. Ed.
,
27
(
2
), pp.
51
54
.
17.
Wang
,
Z.
,
Li
,
Z.
, and
Zhao
,
J.
,
2008
, “
Discussion on Application Prospect of Oil Recovery Technology in Burning Oil Reservoir
,”
Inn. Mong. Petrochem. Technol.
,
2008
(
7
), pp.
16
20
.
18.
Forooghi
,
P.
, and
Hooman
,
K.
,
2014
, “
Experimental Analysis of Heat Transfer of Supercritical Fluids in Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
74
, pp.
448
459
. 10.1016/j.ijheatmasstransfer.2014.03.052
19.
Forooghi
,
P.
, and
Hooman
,
K.
,
2013
, “
Effect of Buoyancy on Turbulent Convection Heat Transfer in Corrugated Channels—A Numerical Study
,”
Int. J. Heat Mass Transfer
,
64
, pp.
850
862
. 10.1016/j.ijheatmasstransfer.2013.05.028
20.
Wang
,
J.
,
Guan
,
Z.
,
Gurgenci
,
H.
,
Sun
,
Y.
, and
Hooman
,
K.
,
2020
, “
A Comprehensive Review on Numerical Approaches to Simulate Heat Transfer of Turbulent Supercritical CO2 Flows
,”
Numer. Heat Transfer Part B
,
77
(
5
), p.
349
400
. 10.1080/10407790.2020.1720440
21.
Wang
,
J.
,
Li
,
J.
,
Gurgenci
,
H.
,
Veeraragavan
,
A.
,
Kang
,
X.
, and
Hooman
,
K.
,
2019
, “
Computational Investigations on Convective Flow and Heat Transfer of Turbulent Supercritical CO2 Cooled in Large Inclined Tubes
,”
Appl. Therm. Eng.
,
159
, p.
113922
. 10.1016/j.applthermaleng.2019.113922
22.
Sanyal
,
S. K.
,
2005
, “
Sustainability and Renewability of Geothermal Power Capacity
,”
Proceedings World Geothermal Congress 2005
,
Antalya, Turkey
,
Apr. 24–29
.
23.
Wong
,
K. V.
, and
Tan
,
N.
,
2015
, “
Feasibility of Using More Geothermal Energy to Generate Electricity
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
041201
. 10.1115/1.4028138
24.
Wu
,
C. H.
, and
Fulton
,
P. F.
,
1971
, “
Experimental Simulation of the Zones Preceding the Combustion Front of an In-Situ Combustion Process
,”
Soc. Pet. Eng. J.
,
11
(
1
), pp.
38
46
. 10.2118/2816-PA
25.
Pierre
,
G.
, and
Sambo
,
A.
,
2013
,
World Energy Resources: 2013 Survey
,
World Energy Council
,
London, UK
.
26.
Bertani
,
R.
,
2012
, “
Geothermal Power Generation in the World 2005–2010 Update Report
,”
Geothermics
,
41
, pp.
1
29
. 10.1016/j.geothermics.2011.10.001
27.
Li
,
M.
, and
Lior
,
N.
,
2015
, “
Analysis of Hydraulic Fracturing and Reservoir Performance in Enhanced Geothermal Systems
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
041203
. 10.1115/1.4030111
28.
Li
,
K.
, and
Zhang
,
L.
,
2008
, “
Exceptional Enhanced Geothermal Systems From Oil and Gas Reservoirs
,”
43rd Workshop on Geothermal Reservoir Engineering
,
Stanford, CA
,
Jan. 28–30
.
29.
Zhao
,
R.
,
Chen
,
Y.
,
Huan
,
R.
,
Castanier
,
L. M.
, and
Kovscek
,
A. R.
,
2015
, “
An Experimental Investigation of the In-Situ Combustion Behavior of Karamay Crude Oil
,”
J. Pet. Sci. Eng.
10.2118/165337-ms
30.
Shikh Anuar
,
F.
,
Ashtiani Abdi
,
I.
,
Odabaee
,
M.
, and
Hooman
,
K.
,
2018
, “
Experimental Study of Fluid Flow Behaviour and Pressure Drop in Channels Partially Filled With Metal Foams
,”
Exp. Therm. Fluid Sci.
,
99
, pp.
117
128
. 10.1016/j.expthermflusci.2018.07.032
31.
Shikh Anuar
,
F.
,
Ashtiani Abdi
,
I.
, and
Hooman
,
K.
,
2018
, “
Flow Visualization Study of Partially Filled Channel With Aluminium Foam Block
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1197
1211
. 10.1016/j.ijheatmasstransfer.2018.07.047
32.
Liu
,
D.
,
Tang
,
J.
,
Zheng
,
R.
, and
Song
,
Q.
,
2021
, “
Determination of the Propagation State of the Combustion Zone During In-Situ Combustion by Dimensionless Numbers
,”
Fuel
,
284
, p.
118972
. 10.1016/j.fuel.2020.118972
33.
Alade
,
O. S.
,
Hamdy
,
M.
,
Mahmoud
,
M.
,
Al Shehri
,
D. A.
,
Mokheimer
,
E.
, and
Al-Nakhli
,
A.
,
2020
, “
Experimental and Numerical Analysis of Using Thermochemical Injection for Preheating to Improve In-Situ Combustion of Bitumen
,”
Fuel
,
275
, p.
117894
. 10.1016/j.fuel.2020.117894
34.
Hallam
,
R. J.
, and
Donnelly
,
J. K.
,
1988
, “
Pressure-Up Blowdown Combustion: A Channeled Reservoir Recovery Process
,”
Int. J. Cancer
,
1
(
1
), pp.
482
487
. 10.2118/18071-pa
35.
Rui
,
S.
, and
Duan
,
Z.
,
2002
, “
An Improved Model Calculating CO2 Solubility in Pure Water and Aqueous NaCl Solutions From 273 to 533 K and From 0 to 2000 Bar
,”
Summary of 2002 Academic Papers of Institute of Geology and Geophysics, Chinese Academy of Sciences
.
36.
Nghiem
,
L.
,
Yang
,
C.
,
Shrivastava
,
V.
,
Kohse
,
B.
,
Hassam
,
M.
, and
Card
,
C.
,
2009
, “
Risk Mitigation Through the Optimization of Residual Gas and Solubility Trapping for CO2 Storage in Saline Aquifers
,”
Energy Procedia
,
1
(
1
), pp.
3015
3022
. 10.1016/j.egypro.2009.02.079
You do not currently have access to this content.