Abstract

Loss circulation materials in the last two decades have witnessed a lot of developments and implementations. New technologies and materials are introduced to treat various types of loss zones. However, the success rate is still very low due to many uncertainties in the selection of types and particle size of the bridging materials. In addition, there are many operational restrictions such as the risk of plugging and pumping difficulties when large size of particle is needed, especially in deep-water drilling. In this study, polyacrylamide (PAM) crosslinked with polyethylenimine (PEI) is introduced as polymer-based mud for loss circulation treatment. The PAM/PEI systems have wide applications in water shutoff for high water production zones and are known for their strong gel and exceptional rheological properties. This study provides a rheological method for screening of PAM/PEI-based drilling formulation with optimized molecular weight and concentrations. Comparative analysis of rheology of non-crosslinked and crosslinked polyacrylamide with other drilling fluids additives as well as proper mixing procedures are provided. The results achieved in this study are used as a strong tool to design a polymer-based mud with competitive rheological properties which achieved an 80% reduction in fluid loss when compared with other conventional loss circulation materials.

References

1.
Kiran
,
R.
, and
Salehi
,
S.
,
2017
, “
Thermoporoelastic Modeling of Time-Dependent Wellbore Strengthening and Casing Smear
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022903
. 10.1115/1.4033591
2.
Magzoub
,
M. I.
,
Salehi
,
S.
,
Hussein
,
I. A.
, and
Nasser
,
M. S.
,
2020
, “
Loss Circulation in Drilling and Well Construction: The Significance of Applications of Crosslinked Polymers in Wellbore Strengthening: A Review
,”
J. Pet. Sci. Eng.
,
185
, p.
106653
. 10.1016/j.petrol.2019.106653
3.
Aston
,
M. S.
,
Alberty
,
M. W.
,
McLean
,
M. R.
,
de Jong
,
H. J.
, and
Armagost
,
K.
,
2004
, “
Drilling Fluids for Wellbore Strengthening
,”
IADC/SPE Drilling Conference
,
Dallas, TX
,
Jan. 1
.
4.
Mehrabian
,
A.
,
Savari
,
S.
,
Whitfill
,
D.
, and
Abousleiman
,
Y.
,
2017
, “
Geomechanics of Wellbore Strengthening Revisited: A Combined Theoretical and Experimental Approach with Field Case Studies
,”
SPE/IADC Drilling Conference and Exhibition
,
The Hague, The Netherlands
,
Mar. 14–16
.
5.
Cole
,
P.
,
Young
,
K. R.
,
Doke
,
C.
,
Duncan
,
N.
, and
Eustes
,
B.
,
2017
,
Geothermal Drilling: A Baseline Study of Nonproductive Time Related to Lost Circulation
,
National Renewable Energy Lab (NREL)
,
Golden, CO
.
6.
Ezeakacha
,
C. P.
,
Salehi
,
S.
, and
Hayatdavoudi
,
A.
,
2017
, “
Experimental Study of Drilling Fluid's Filtration and Mud Cake Evolution in Sandstone Formations
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022912
. 10.1115/1.4035425
7.
Ezeakacha
,
C. P.
, and
Salehi
,
S.
,
2019
, “
A Holistic Approach to Characterize mud Loss Using Dynamic mud Filtration Data
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072903
. 10.1115/1.4042281
8.
Magzoub
,
M. I.
,
Salehi
,
S.
,
Hussein
,
I. A.
, and
Nasser
,
M. S.
,
2020
, “
A Comprehensive Rheological Study for a Flowing Polymer-Based Drilling Fluid Used for Wellbore Strengthening
,”
SPE International Conference and Exhibition on Formation Damage Control
,
Lafayette, LO
,
Feb. 19–21
.
9.
Rogovina
,
L. Z.
,
Vasil’ev
,
V. G.
, and
Braudo
,
E. E.
,
2008
, “
Definition of the Concept of Polymer gel
,”
Polymer Sci. Series C
,
50
(
1
), pp.
85
92
. 10.1134/S1811238208010050
10.
Shamlooh
,
M.
,
Hamza
,
A.
,
Hussein
,
I.
,
Nasser
,
M.
,
Magzoub
,
M.
, and
Salehi
,
S.
,
2019
, “
Investigation of the Rheological Properties of Nanosilica-Reinforced Polyacrylamide/Polyethyleneimine Gels for Wellbore Strengthening at High Reservoir Temperatures
,”
Eenergy & Fuels
,
33
, pp.
6829
6836
. 10.1021/acs.energyfuels.9b00974
11.
Shamlooh
,
M.
,
Hussein
,
I.
,
Nasser
,
M.
,
Magzoub
,
M.
, and
Salehi
,
S.
,
2019
, “
Development of pH-Controlled Aluminum-Based Polymeric Gel for Conformance Control in Sour Gas Reservoirs
,”
ACS Omega
,
28
, pp.
24504
24512
. doi.org/10.1021/acsomega.0c02967
12.
Al-Muntasheri
,
G. A.
,
Nasr-El-Din
,
H. A.
, and
Zitha
,
P. L. J.
,
2008
, “
Gelation Kinetics and Performance Evaluation of an Organically Crosslinked Gel at High Temperature and Pressure
,”
SPE-182266-PA
,
13
(
03
), pp.
337
345
.
13.
Hashmat
,
M. D.
,
Sultan
,
A. S.
,
Rahman
,
S.
,
Hussain
,
S. M. S.
, and
Ali
,
S. A.
,
2017
, “
Flowing Gels for Loss Circulation Prevention
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 24–27
.
14.
Gibson
,
J.
,
Javora
,
P. H.
, and
Adkins
,
M.
,
2011
, “
Pre-Cross-Linked Pills Provide Efficient and Consistent Fluid Loss Control
,”
SPE European Formation Damage Conference
,
Noordwijk, The Netherlands
,
June 7–10
.
15.
El-karsani
,
K. S. M.
,
Al-Muntasheri
,
G. A.
, and
Hussein
,
I. A.
,
2014
, “
Polymer Systems for Water Shutoff and Profile Modification: A Review Over the Last Decade
,”
SPE-182266-PA
,
19
(
01
), pp.
135
149
.
16.
Hossein Sedaghat
,
M.
,
Hossein Ghazanfari
,
M.
,
Parvazdavani
,
M.
, and
Morshedi
,
S.
,
2013
, “
Experimental Investigation of Microscopic/Macroscopic Efficiency of Polymer Flooding in Fractured Heavy oil Five-Spot Systems
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032901
. 10.1115/1.4023171
17.
Amir
,
Z.
,
Mohd Saaid
,
I.
, and
Mohamed Jan
,
B.
,
2018
, “
An Optimization Study of Polyacrylamide-Polyethylenimine-Based Polymer Gel for High Temperature Reservoir Conformance Control
,”
Int. J. Polymer Sci.
,
2018
(
2510132
), pp.
1
10
. 10.1155/2018/2510132
18.
El Karsani
,
K. S. M.
,
Al-Muntasheri
,
G. A.
,
Sultan
,
A. S.
, and
Hussein
,
I. A.
,
2014
, “
Impact of Salts on Polyacrylamide Hydrolysis and Gelation: New Insights
,”
J. Appl. Polym. Sci.
,
131
(
23
), p.
41185
.
19.
API R. 13I
,
2009
,
Recommended Practice for Laboratory Testing of Drilling Fluids
,
API
,
Washington, DC
.
20.
Tessarolli
,
F. G. C.
,
Souza
,
S. T. S.
,
Gomes
,
A. S.
, and
Mansur
,
C. R. E.
,
2019
, “
Gelation Kinetics of Hydrogels Based on Acrylamide–AMPS–NVP Terpolymer, Bentonite, and Polyethylenimine for Conformance Control of oil Reservoirs
,”
Gels
,
5
(
1
), p.
7
. 10.3390/gels5010007
21.
Shaikh
,
S. M.
,
Nasser
,
M. S.
,
Hussein
,
I. A.
, and
Benamor
,
A.
,
2017
, “
Investigation of the Effect of Polyelectrolyte Structure and Type on the Electrokinetics and Flocculation Behavior of Bentonite Dispersions
,”
Chem. Eng. J.
,
311
, pp.
265
276
. 10.1016/j.cej.2016.11.098
22.
Nasser
,
M. S.
, and
James
,
A. E.
,
2006
, “
The Effect of Polyacrylamide Charge Density and Molecular Weight on the Flocculation and Sedimentation Behavior of Kaolinite Suspensions
,”
Sep. Purif. Technol.
,
52
(
2
), pp.
241
252
. 10.1016/j.seppur.2006.04.005
You do not currently have access to this content.