Abstract

This study investigated the use of biodiesel (B100) and baseline diesel in two identical unmodified vehicles to realistically assess different aspects of biodiesel's compatibility with modern common rail direct injection (CRDI) fuel injection equipment (FIE) and evaluate biodiesel's long-term durability/compatibility with engine components. Two identical vehicles were fueled with biodiesel (B100) and baseline mineral diesel for 30,000 km field-trials on highway under identical operating conditions. Exhaustive experimental results from this series of tests are divided into four segments. The fourth and the last paper of this series compares the effects of long-term usage of biodiesel on piston deposits and FIE components compared to baseline mineral diesel. A key challenge for improving engine performance and fuel economy is the reduction of frictional losses, primarily at the piston ring–liner interface, which accounts for majority of frictional losses. Piston rating was done for the two vehicles after the conclusion of field-trials and it revealed that rating of different piston sections was ∼5–15% superior in case of biodiesel-fueled vehicle compared to that of diesel-fueled vehicle. Performance of FIE components such as fuel filter, fuel injectors, and fuel pump was assessed after the conclusion of field-trials. Pressure drop at different fuel flow-rates across the fuel filter was measured for assessing the fuel filter blockage. Pressure drop across biodiesel filter was ∼30% higher than diesel filter after 10,000 km usage but almost twice after 15,000 km usage. These experimental results indicated that some additional technical measures should be taken by automotive manufacturers to offset these technical challenges before biodiesel is adapted on a large-scale in modern CRDI vehicles.

References

1.
Yerrennagoudaru
,
H.
, and
Manjunatha
,
K.
,
2017
, “
Comparison of Aldehyde Emissions in Alcohols Blended With Vegetable Oils Fueled CI Engine Using With and Without Ceramic and Platinum Coated Pistons
,”
Mater. Today: Proc.
,
4
(
8
), pp.
9304
9315
. 10.1016/j.matpr.2017.07.290
2.
Yerrennagoudaru
,
H.
, and
Manjunatha
,
K.
,
2017
, “
Investigation of a Diesel Engine With Ceramic and Platinum Coated Piston Using Canola Oil, Soyabean Oil and Palm Oil Blended With Ethanol
,”
Mater. Today: Proc.
,
4
(
2
), pp.
725
733
. 10.1016/j.matpr.2017.01.078
3.
Balakrishnan
,
A.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2016
, “
Combustion Characteristics of Partially Premixed Prevaporized Palm Methyl Ester jet A Fuel Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012202
. 10.1115/1.4031966
4.
Li
,
K. Y.
, and
Hsu
,
S. M.
,
2019
, “
A Quantitative Wear Measurement Method on Production Engine Parts: Effect of DLC Thin Films on Wear
,”
Wear
,
426–427
, pp.
462
470
. 10.1016/j.wear.2019.01.054
5.
Adler
,
J.
, and
Bandhauer
,
T.
,
2017
, “
Performance of a Diesel Engine at High Coolant Temperature
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062203
. 10.1115/1.4036771
6.
Cullen
,
B.
, and
McGovern
,
J.
,
2009
, “
The Quest for More Efficient Industrial Engines: A Review of Current Industrial Engine Development and Applications
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
021601
. 10.1115/1.3120377
7.
Dudareva
,
N. Y.
,
Enikeev
,
R. D.
, and
Ivanov
,
V. Y.
,
2017
, “
Thermal Protection of Internal Combustion Engines Pistons
,”
Procedia Eng.
,
206
, pp.
1382
1387
. 10.1016/j.proeng.2017.10.649
8.
Kohashi
,
K.
,
Kimura
,
Y.
, and
Murakami
,
M.
,
2013
, “
Analysis of Piston Friction in Internal Combustion Engine
,”
SAE Int. J. Fuels Lubr.
,
6
(
3
), pp.
589
593
. 10.4271/2013-01-2515
9.
Totaro
,
P. P.
,
Westerfield
,
Z.
, and
Tian
,
T.
Introducing a New Piston Skirt Profile to Reduce Engine Friction
,”
SAE Technical Paper No. 2016-01-1046
.
10.
Mazouzi
,
R.
,
Kellaci
,
A.
, and
Karas
,
A.
,
2016
, “
Effects of Piston Design Parameters on Skirt-Liner Dynamic Behavior
,”
Ind. Lubr. Tribol.
,
68
(
2
), pp.
250
258
. 10.1108/ILT-07-2015-0103
11.
Tan
,
Y. C.
, and
Ripin
,
Z. M.
,
2014
, “
Technique to Determine Instantaneous Piston Skirt Friction During Piston Slap
,”
Tribol. Int.
,
74
, pp.
145
153
. 10.1016/j.triboint.2014.02.014
12.
Hisham
,
S.
,
Kadirgama
,
K.
,
Ramasamy
,
D.
,
Noor
,
M. M.
,
Amirruddin
,
A. K.
,
Najafi
,
G.
, and
Rahman
,
M. M.
,
2017
, “
Waste Cooking oil Blended With the Engine oil for Reduction of Friction and Wear on Piston Skirt
,”
Fuel
,
205
, pp.
247
261
. 10.1016/j.fuel.2017.05.068
13.
Ye
,
Z.
,
Zhang
,
C.
,
Wang
,
Y.
,
Cheng
,
H. S.
,
Tung
,
S.
,
Wang
,
Q. J.
, and
He
,
X.
,
2004
, “
An Experimental Investigation of Piston Skirt Scuffing: A Piston Scuffing Apparatus, Experiments, and Scudding Mechanism Analyses
,”
Wear
,
257
(
1–2
), pp.
8
31
. 10.1016/S0043-1648(03)00538-6
14.
Ali
,
M. K. A.
,
Xianjun
,
H.
,
Mai
,
L.
,
Bicheng
,
C.
,
Turkson
,
R. F.
, and
Qingping
,
C.
,
2016
, “
Reducing Frictional Power Losses and Improving the Scuffing Resistance in Automotive Engines Using Hybrid Nano-Materials as Nano-Lubricant Additives
,”
Wear
,
364–365
, pp.
270
281
. 10.1016/j.wear.2016.08.005
15.
Lenauer
,
C.
,
Tomastik
,
C.
,
Wopelka
,
T.
, and
Jech
,
M.
,
2015
, “
Piston Ring Wear and Cylinder Liner Tribofilm in Tribotests With Lubricants Artificially Altered With Ethanol Combustion Products
,”
Tribol. Int.
,
82
, pp.
415
422
. 10.1016/j.triboint.2014.04.034
16.
Moosavian
,
A.
,
Najafi
,
G.
,
Ghobadian
,
B.
,
Mirsalim
,
M.
,
Jafari
,
S. M.
, and
Sharghi
,
P.
,
2016
, “
Piston Scuffing Fault and Its Identification in an IC Engine by Vibration Analysis
,”
Appl. Acoust.
,
102
, pp.
40
48
. 10.1016/j.apacoust.2015.09.002
17.
Westerfield
,
Z.
,
Totaro
,
P.
,
Kim
,
D.
, and
Tian
,
T.
An Experimental Study of Piston Skirt Roughness and Profiles on Piston Friction Using the Floating Liner Engine
,”
SAE Technical Paper No. 2016-01-1043
.
18.
Obert
,
P.
,
Muller
,
T.
,
Fuber
,
H. J.
, and
Bartel
,
D.
,
2016
, “
The Influence of oil Supply and Cylinder Liner Temperature on Friction, Wear and Scuffing Behavior of Piston Ring Cylinder Liner Contacts—A new Model Test
,”
Tribol. Int.
,
94
, pp.
306
314
. 10.1016/j.triboint.2015.08.026
19.
Venkatachalam
,
G.
, and
Kumaravel
,
A.
,
2019
, “
Experimental Investigation on the Failure of Diesel Engine Piston
,”
Mater. Today: Proc.
,
16
, pp.
1196
1203
. 10.1016/j.matpr.2019.05.214
20.
Gandhi
,
N. G.
,
Sanadhya
,
K.
,
Saxena
,
H.
,
Aghav
,
Y.
, and
Kumar
,
M. N.
Improving the Reliability of Piston for Increased Power Density by Changing the Shape of Piston Bowl for a Medium Speed Heavy Duty Diesel Engine
,”
SAE Technical Paper No. 2019-26-0048
.
21.
Lava
,
K. R.
,
Sannagoudra
,
J.
, and
Ganesh
,
D. B.
,
2017
, “
Experimental Exploration on the Influence of Different Piston Geometry and Injection Timing by Using bio-Diesel
,”
Mater. Today: Proc.
,
4
(
10
), pp.
10879
10885
. 10.1016/j.matpr.2017.08.042
22.
Erdogan
,
S.
,
Aydin
,
S.
,
Balki
,
M. K.
, and
Sayin
,
C.
,
2020
, “
Operational Evaluation of Thermal Barrier Coated Diesel Engine Fueled With Biodiesel/Diesel Blend by Using MCDM Method Based on Engine Performance, Emission and Combustion Characteristics
,”
Renewable Energy
,
151
, pp.
698
706
. 10.1016/j.renene.2019.11.075
23.
Lu
,
Y.
,
Li
,
S.
,
Wang
,
P.
,
Liu
,
C.
,
Zhang
,
Y.
, and
Muller
,
N.
,
2018
, “
The Analysis of Secondary Motion and Lubrication Performance of Piston Considering the Piston Skirt Profile
,”
Shock Vib.
,
3240469
, pp.
1
28
. 10.1155/2018/3240469
24.
Poort
,
M.
,
Cheng
,
C.
,
Richardson
,
D.
, and
Schock
,
H.
,
2015
, “
Piston Ring and Groove Side Wear Analysis for Diesel Engines
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
111503
. 10.1115/1.4030290
25.
Karthikeyan
,
S.
,
Periyasami
,
M.
, and
Prathima
,
A.
,
2020
, “
Emission Analysis of CI Engine Fueled by Pilot Dual Fuel Blends
,”
Mater. Today: Proc.
10.1016/j.matpr.2020.04.600
26.
Agarwal
,
A. K.
, and
Dhar
,
A.
,
2012
, “
Wear, Durability, and Lubricating oil Performance of a Straight Vegetable oil (Karanja) Blend Fueled Direct Injection Compression Ignition Engine
,”
J. Renewable Sustainable Energy
,
4
(
6
), p.
063138
. 10.1063/1.4771694
27.
Zhang
,
X.
,
Peng
,
G.
,
Du
,
G.
,
Sun
,
X.
,
Jiang
,
G.
,
Zeng
,
X.
,
Sun
,
P.
,
Deng
,
B.
,
Xie
,
H.
,
Wu
,
Z.
, and
Xiao
,
T.
,
2015
, “
Investigating the Microstructures of Piston Carbon Deposits in a Large-Scale Marine Diesel Engine Using Synchrotron X-ray Microtomography
,”
Fuel
,
142
, pp.
173
179
. 10.1016/j.fuel.2014.11.005
28.
Gulzar
,
M.
,
Maszuki
,
H. H.
,
Varman
,
M.
,
Kalam
,
M. A.
,
Zulkifli
,
N. W. M.
,
Mufti
,
R. A.
,
Liaquat
,
A. M.
,
Zahid
,
R.
, and
Arslan
,
A.
,
2016
, “
Effects of Biodiesel Blends on Lubricating oil Degradation and Piston Assembly Energy Losses
,”
Energy
,
111
, pp.
713
721
. 10.1016/j.energy.2016.05.132
29.
Bajaras
,
P. E.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2012
, “
Combustion Characteristics of Biofuels in Porous-Media Burners at an Equivalence Ratio of 0.8
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
021004
. 10.1115/1.4006046
30.
D’Alessandro
,
B.
,
Bidini
,
G.
,
Zampilli
,
M.
,
Laranci
,
P.
,
Bartocci
,
P.
, and
Fantozzi
,
F.
,
2016
, “
Straight and Waste Vegetable oil in Engines: Review and Experimental Measurement of Emissions, Fuel Consumption and Injector Fouling on a Turbocharged Commercial Engine
,”
Fuel
,
182
(
15
), pp.
198
209
. 10.1016/j.fuel.2016.05.075
31.
McDonnell
,
K. P.
,
Ward
,
S. M.
, and
McNulty
,
P. B.
,
1998
, “
Accelerated Injector Fouling Using Rapeseed oil/Diesel Blends in a Direct Injection Engine
,”
Trans. ASAE
,
41
(
2
), pp.
277
282
. 10.13031/2013.17172
32.
Caprotti
,
R.
,
Breakspear
,
A.
,
Graupner
,
O.
, and
Klaua
,
T.
Detergency Requirements of Future Diesel Injection Systems
,”
SAE Technical Paper No. 2005-01-3901
.
33.
Tang
,
J.
,
Pischinger
,
S.
,
Lamping
,
M.
,
Korfer
,
T.
,
Tatur
,
M.
, and
Tomazic
,
D.
Coking Phenomena in Nozzle Orifices of DI-Diesel Engines
,”
SAE Technical Paper No. 2009-01-0837
.
34.
Omori
,
T.
,
Tanaka
,
A.
,
Yamada
,
K.
, and
Bunne
,
S.
Biodiesel Deposit Formation Mechanism and Improvement of Fuel Injection Equipment (FIE)
,”
SAE Technical Paper No. 2011-01-1935
.
35.
Velaers
,
A. J.
, and
De Goede
,
S.
,
2012
, “
The Properties and Injector Nozzle Fouling Performance of Neat GTL and GTL/EN590 Diesel Blends in Various Diesel Engines
,”
SAE Int. J. Fuels Lubr.
,
5
(
3
), pp.
1174
1186
. 10.4271/2012-01-1692
36.
Agarwal
,
A. K.
,
Park
,
S.
,
Dhar
,
A.
,
Lee
,
C. S.
,
Park
,
S.
,
Gupta
,
T.
, and
Gupta
,
N. K.
,
2018
, “
Review of Experimental and Computational Studies on Spray, Combustion, Performance and Emission Characteristics of Biodiesel Fuelled Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
120801
. 10.1115/1.4040584
You do not currently have access to this content.