Abstract

This study investigated the use of biodiesel (B100) and baseline mineral diesel in two identical unmodified vehicles to realistically assess different aspects of biodiesel’s compatibility and durability issues with modern common rail direct injection (CRDI) engine-powered vehicles. Two identical vehicles were operated for 30,000 km under identical operating conditions during a field-trial using biodiesel (B100) and mineral diesel. Exhaustive experimental results from this series of tests are divided into four sections, and this is the third paper of this series of four papers, which covers comparative feasibility and wear analyses, underlining the effect of long-term use of biodiesel on wear of cylinder liner and piston rings compared to baseline mineral diesel-fueled vehicle. Surface microstructures at three locations of the cylinder liner were evaluated using scanning electron microscopy (SEM). Wear was found to be relatively lower at all locations of liners from biodiesel-fueled vehicle compared to diesel-fueled vehicle. Surface roughness of cylinder liners measured at different locations showed that it reduced by ∼30–40% at top dead center (TDC), ∼10–20% at mid-stroke, and ∼20–30% at bottom dead center (BDC) for both vehicles, showing higher wear close to TDC compared to mid-stroke and BDC locations. Loss of piston-ring weight was significantly lower for biodiesel-fueled vehicle. Engine tear-down observations and carbon deposits on various engine components were recorded after the conclusion of the field trials. During these field-trials, engine durability-related issues such as fuel-filter plugging, injector coking, piston-ring sticking, carbon deposits in the combustion chamber, and contamination of lubricating oils were found to be relatively lower in biodiesel-fueled vehicle. Overall, no noticeable durability issues were recorded because of the use of biodiesel in CRDI engine-powered vehicle.

References

1.
Naik
,
M.
,
Meher
,
L. C.
,
Naik
,
S. N.
, and
Das
,
L. M.
,
2008
, “
Production of Biodiesel From High Free Fatty Acid Karanja (Pongamia Pinnata) Oil
,”
Biomass Bioenergy
,
32
(
4
), pp.
354
357
. 10.1016/j.biombioe.2007.10.006
2.
Nogueira
,
L. A. H.
,
2011
, “
Does Biodiesel Make Sense?
,”
Energy
,
36
(
6
), pp.
3659
3666
. 10.1016/j.energy.2010.08.035
3.
Park
,
S. H.
,
Suh
,
H. K.
, and
Lee
,
C. S.
,
2010
, “
Nozzle Flow and Atomization Characteristics of Ethanol Blended Biodiesel Fuel
,”
Renewable Energy
,
35
(
1
), pp.
144
150
. 10.1016/j.renene.2009.06.012
4.
Verissimo
,
M. I. S.
,
Teresa
,
M.
, and
Gomes
,
S. R.
,
2011
, “
Assessment on the Use of Biodiesel in Cold Weather: Pour Point Determination Using a Piezoelectric Quartz Crystal
,”
Fuel
,
90
(
6
), pp.
2315
2320
. 10.1016/j.fuel.2011.02.034
5.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2018
, “
Evaluation of Fuel Injection Strategies for Biodiesel-Fueled CRDI Engine Development and Particulate Studies
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102201
. 10.1115/1.4039745
6.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2016
, “
Diesoline, Diesohol, and Diesosene Fueled HCCI Engine Development
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052212
. 10.1115/1.4033571
7.
Agarwal
,
A. K.
,
Sharma
,
N.
,
Singh
,
A. P.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Patel
,
C. K.
,
2019
, “
Adaptation of Methanol-Dodecanol-Diesel Blend in Diesel Genset Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102203
. 10.1115/1.4043390
8.
Gupta
,
J. G.
,
Agarwal
,
A. K.
, and
Aggarwal
,
S. K.
,
2015
, “
Particulate Emissions From Karanja Biodiesel Fueled Turbocharged CRDI Sports Utility Vehicle Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
064503
. 10.1115/1.4031006
9.
Atadashi
,
I. M.
,
Aroua
,
M. K.
, and
Aziz
,
A. A.
,
2010
, “
High Quality Biodiesel and Its Diesel Engine Application: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
7
), pp.
1999
2008
. 10.1016/j.rser.2010.03.020
10.
Kumaran
,
P.
,
Mazlini
,
N.
,
Hussein
,
I.
,
Nazrain
,
M.
, and
Khairul
,
M.
,
2011
, “
Technical Feasibility Studies for Langkawi WCO (Waste Cooking Oil) Derived-Biodiesel
,”
Energy
,
36
(
3
), pp.
1386
1393
. 10.1016/j.energy.2011.02.002
11.
Nnaemeka
,
O. J.
, and
Bibeau
,
E. L.
,
2019
, “
Application of Low-Temperature Phase Change Materials to Enable the Cold Weather Operability of B100 Biodiesel in Diesel Trucks
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062008
. 10.1115/1.4042409
12.
Yusuf
,
N. N. A. N.
,
Kamarudin
,
S. K.
, and
Yaakub
,
Z.
,
2011
, “
Overview on the Current Trends in Biodiesel Production
,”
Energy Convers. Manage.
,
52
(
7
), pp.
2741
2751
. 10.1016/j.enconman.2010.12.004
13.
Sinha
,
S.
,
Agarwal
,
A. K.
, and
Garg
,
S.
,
2008
, “
Biodiesel Development From Rice Bran Oil: Transesterification Process Optimization and Fuel Characterization
,”
Energy Convers. Manage.
,
49
(
5
), pp.
1248
1257
. 10.1016/j.enconman.2007.08.010
14.
Fernando
,
S.
,
Karra
,
P.
,
Hernandez
,
R.
, and
Jha
,
S. K.
,
2007
, “
Effect of Incompletely Converted Soybean Oil on Biodiesel Quality
,”
Energy
,
32
(
5
), pp.
844
851
. 10.1016/j.energy.2006.06.019
15.
Cernoch
,
M.
,
Hajek
,
M.
, and
Skopal
,
F.
,
2010
, “
Relationships Among Flash Point, Carbon Residue, Viscosity and Some Impurities in Biodiesel After Ethanolysis of Rapeseed Oil
,”
Bioresour. Technol.
,
101
(
19
), pp.
7397
7401
. 10.1016/j.biortech.2010.05.003
16.
Rashid
,
U.
,
Anwar
,
F.
, and
Knothe
,
G.
,
2011
, “
Biodiesel From Milo (Thespesia Populnea L.) Seed Oil
,”
Biomass Bioenergy
,
35
(
9
), pp.
4034
4039
. 10.1016/j.biombioe.2011.06.043
17.
Alptekin
,
E.
, and
Canakci
,
M.
,
2008
, “
Determination of the Density and the Viscosities of Biodiesel—Diesel Fuel Blends
,”
Renewable Energy
,
33
(
12
), pp.
2623
2630
. 10.1016/j.renene.2008.02.020
18.
Hoekman
,
S. K.
,
Broch
,
A.
,
Robbins
,
C.
,
Ceniceros
,
E.
, and
Natarajan
,
M.
,
2012
, “
Review of Biodiesel Composition, Properties and Specifications
,”
Renewable Sustainable Energy Rev.
,
16
(
1
), pp.
143
169
. 10.1016/j.rser.2011.07.143
19.
Cunha
,
M. E. D.
,
Krause
,
L. C.
,
Moraes
,
M. S. A.
,
Faccini
,
C. S.
,
Jacques
,
R. A.
,
Almeida
,
S. R.
,
Rodrigues
,
M. R. A.
, and
Caramao
,
E. B.
,
2009
, “
Beef Tallow Biodiesel Produced in a Pilot Scale
,”
Fuel Process. Technol.
,
90
(
4
), pp.
570
575
. 10.1016/j.fuproc.2009.01.001
20.
Demirbas
,
A.
,
2006
, “
Biodiesel Production via Non-catalytic SCF Method and Biodiesel Fuel Characteristics
,”
Energy Convers. Manage.
,
47
(
15–16
), pp.
2271
2282
. 10.1016/j.enconman.2005.11.019
21.
Agarwal
,
A. K.
,
Park
,
S.
,
Dhar
,
A.
,
Lee
,
C. S.
,
Park
,
S.
,
Gupta
,
T.
, and
Gupta
,
N. K.
,
2018
, “
Review of Experimental and Computational Studies on Spray, Combustion, Performance and Emissions Characteristics of Biodiesel Fueled Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
120801
. 10.1115/1.4040584
22.
Patel
,
C. K.
,
Agarwal
,
A. K.
,
Tiwari
,
N.
,
Lee
,
S.
,
Lee
,
C. S.
, and
Park
,
S.
,
2016
, “
Combustion Noise, Vibrations and Spray Characterization for Karanja Biodiesel Fueled Engine
,”
Appl. Therm. Eng.
,
106
, pp.
506
517
. 10.1016/j.applthermaleng.2016.06.025
23.
Tesfa
,
B.
,
Mishra
,
R.
,
Gu
,
F.
, and
Powles
,
N.
,
2010
, “
Prediction Models for Density and Viscosity of Biodiesel and Their Effects on Fuel Supply System in CI Engines
,”
Renewable Energy
,
35
(
12
), pp.
2752
2760
. 10.1016/j.renene.2010.04.026
24.
Chiu
,
C. W.
,
Schumacher
,
L. G.
, and
Suppes
,
G. J.
,
2004
, “
Impact of Cold Flow Improvers on Soybean Biodiesel Blend
,”
Biomass Bioenergy
,
27
(
5
), pp.
485
491
. 10.1016/j.biombioe.2004.04.006
25.
Boshui
,
C.
,
Yuqiu
,
S.
,
Jianhua
,
F.
,
Jiu
,
W.
, and
Jiang
,
W.
,
2010
, “
Effect of Cold Flow Improvers on Flow Properties of Soybean Biodiesel
,”
Biomass Bioenergy
,
34
(
9
), pp.
1309
1313
. 10.1016/j.biombioe.2010.04.001
26.
Joshi
,
R. M.
, and
Pegg
,
M. J.
,
2007
, “
Flow Properties of Biodiesel Fuel Blends at Low Temperatures
,”
Fuel
,
86
(
1–2
), pp.
143
151
. 10.1016/j.fuel.2006.06.005
27.
Felizardo
,
P.
,
Correia
,
M. J. N.
,
Raposo
,
I.
,
Mendes
,
J. F.
,
Berkemeier
,
R.
, and
Bordado
,
J. M.
,
2006
, “
Production of Biodiesel From Waste Frying oil
,”
Waste Manage.
,
26
(
5
), pp.
487
494
. 10.1016/j.wasman.2005.02.025
28.
Jain
,
S.
, and
Sharma
,
M. P.
,
2011
, “
Correlation Development for Effect of Metal Contaminants on the Oxidation Stability of Jatropha Curcas Biodiesel
,”
Fuel
,
90
(
5
), pp.
2045
2050
. 10.1016/j.fuel.2011.02.002
29.
Fazal
,
M. A.
,
Haseeb
,
A. S. M. A.
, and
Masjuki
,
H. H.
,
2011
, “
Biodiesel Feasibility Study: An Evaluation of Material Compatibility; Performance; Emission and Engine Durability
,”
Renewable Sustainable Energy Rev.
,
15
(
2
), pp.
1314
1324
. 10.1016/j.rser.2010.10.004
30.
Geller
,
D. P.
, and
Goodrum
,
J. W.
,
2004
, “
Effects of Specific Fatty Acid Methyl Esters on Diesel Fuel Lubricity
,”
Fuel
,
83
(
17–18
), pp.
2351
2356
. 10.1016/j.fuel.2004.06.004
31.
Haseeb
,
A. S. M. A.
,
Masjuki
,
H. H.
,
Ann
,
L. J.
, and
Fazal
,
M. A.
,
2010
, “
Corrosion Characteristics of Copper and Leaded Bronze in Palm Biodiesel
,”
Fuel Process. Technol.
,
91
(
3
), pp.
329
334
. 10.1016/j.fuproc.2009.11.004
32.
Fazal
,
M. A.
,
Haseeb
,
A. S. M. A.
, and
Maszuki
,
H. H.
,
2011
, “
Effect of Different Corrosion Inhibitors on the Corrosion of Cast Iron in Palm Biodiesel
,”
Fuel Process. Technol.
,
92
(
11
), pp.
2154
2159
. 10.1016/j.fuproc.2011.06.012
33.
Fazal
,
M. A.
,
Haseeb
,
A. S. M. A.
, and
Masjuki
,
H. H.
,
2010
, “
Comparative Corrosive Characteristics of Petroleum Diesel and Palm Biodiesel for Automotive Materials
,”
Fuel Process. Technol.
,
91
(
10
), pp.
1308
1315
. 10.1016/j.fuproc.2010.04.016
34.
Quadros
,
D. P. C.
,
Rau
,
M.
,
Idrees
,
M.
,
Chaves
,
E. S.
,
Curtius
,
A. J.
, and
Borges
,
D. L. G.
,
2011
, “
A Simple and Fast Procedure for the Determination of Al, Cu, Fe and Mn in Biodiesel Using High-Resolution Continuum Source Electrothermal Atomic Absorption Spectrometry
,”
Spectrochim. Acta Part B
,
66
(
5
), pp.
373
377
. 10.1016/j.sab.2011.04.002
35.
Reddy
,
M. S.
,
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2016
, “
Effect of Straight Vegetable oil Blends and Biodiesel Blends on Wear of Mechanical Fuel Injection Equipment of a Constant Speed Diesel Engine
,”
Renewable Energy
,
99
, pp.
1008
1018
. 10.1016/j.renene.2016.07.072
36.
Haseeb
,
A. S. M. A.
,
Fazal
,
M. A.
,
Jahirul
,
M. I.
, and
Masjuki
,
H. H.
,
2011
, “
Compatibility of Automotive Materials in Biodiesel: A Review
,”
Fuel
,
90
(
3
), pp.
922
931
. 10.1016/j.fuel.2010.10.042
37.
Cetinkaya
,
M.
,
Ulusoy
,
Y.
,
Tekin
,
Y.
, and
Karaosmanoglu
,
F.
,
2005
, “
Engine and Winter Road Test Performances of Used Cooking Oil Originated Biodiesel
,”
Energy Convers. Manage.
,
46
(
7–8
), pp.
1279
1291
. 10.1016/j.enconman.2004.06.022
38.
Almeida
,
F. A.
,
Mtriboaru
,
M. M.
,
Shabani
,
M.
,
Oliveira
,
F. J.
,
Silva
,
R. F.
, and
Achete
,
C. A.
,
2013
, “
Enhancing the Tribological Performance Under Biodiesel Lubrication Using CVD Diamond Coated Parts
,”
Wear
,
302
(
1–2
), pp.
1370
1377
. 10.1016/j.wear.2013.01.090
39.
Pehan
,
S.
,
Jerman
,
M. S.
,
Kegl
,
M.
, and
Kegl
,
B.
,
2009
, “
Biodiesel Influence on Tribology Characteristics of a Diesel Engine
,”
Fuel
,
88
(
6
), pp.
970
979
. 10.1016/j.fuel.2008.11.027
40.
Sharma
,
A.
, and
Murugan
,
S.
,
2017
, “
Durability Analysis of a Single Cylinder DI Diesel Engine Operating with a non—Petroleum Fuel
,”
Fuel
,
191
, pp.
393
402
. 10.1016/j.fuel.2016.11.086
41.
Lin
,
Y. S.
, and
Lin
,
H. P.
,
2011
, “
Spray Characteristics of Emulsified Castor Biodiesel on Engine Emissions and Deposit Formation
,”
Renewable Energy
,
36
(
12
), pp.
3507
3516
. 10.1016/j.renene.2011.05.039
42.
Dong
,
W. P.
,
Davis
,
E. J.
,
Butler
,
D. L.
, and
Stout
,
K. J.
,
1995
, “
Topographic Features of Cylinder Liners- an Application of Three-Dimensional Characterization Techniques
,”
Tribol. Int.
,
28
(
7
), pp.
453
463
. 10.1016/0301-679X(95)00010-2
43.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, p.
407
.
44.
Stachowiak
,
G. W.
, and
Batchelor
,
A. W.
,
2001
,
Engineering Tribology
,
Butterworth-Heinemann
,
Boston, MA
, p.
450
.
You do not currently have access to this content.