Abstract

This study investigated the use of biodiesel (B100) and baseline diesel in two identical unmodified vehicles to realistically assess different aspects of biodiesel’s compatibility with modern common rail direct injection (CRDI) diesel engines and its effects on lubricating oil degradation and wear. Two identical vehicles were operated for 30,000 km each under identical operating conditions on highway during a field-trial while using biodiesel (B100) and baseline mineral diesel. Exhaustive experimental results from this series of tests were divided into four segments, and this paper covers the second segment showing the effect of long-term usage of biodiesel on the lubricating oil properties and traces of wear metal addition compared to baseline mineral diesel. Lubricating oil samples were drawn periodically from these vehicles for condition monitoring such as lubricating oil viscosity, density, soot content, total base number (TBN), ash content, trace metal concentrations, and thermal stability. The viscosity of lubricating oil samples drawn from biodiesel fueled vehicles were found to be ∼10–15% lower compared to that from diesel-fueled vehicles, whereas density and ash content were relatively lower by ∼5–10%. Carbon residues of lubricating oil samples drawn from B100 fueled vehicles were lower by ∼15–20% compared to that of diesel-fueled vehicles. There was a very strong reduction (∼70%) in the soot content of lubricating oil from biodiesel fueled vehicles. Trace metal analysis to compare wear debris addition was also done for all lubricating oil samples. Thermo-gravimetric analyses of lubricating oil samples from biodiesel fueled vehicles showed lower mass loss with increasing temperature hence relatively higher thermal stability and lower deterioration. Results also suggested that operational and durability issues associated with vegetable oils as alternate fuel were completely eliminated by using them after converting them into biodiesel meeting prevailing biodiesel specifications.

References

1.
Sundus
,
F.
,
Fazal
,
M. A.
, and
Maszuki
,
H. H.
,
2017
, “
Tribology with Biodiesel: A Study on Enhancing Biodiesel Stability and its Fuel Properties
,”
Renewable Sustainable Energy Rev.
,
70
, pp.
399
412
. 10.1016/j.rser.2016.11.217
2.
Dharma
,
S.
,
Ong
,
H. C.
,
Maszuki
,
H. H.
,
Sebayang
,
A. H.
, and
Silitonga
,
A. S.
,
2016
, “
An Overview of Engine Durability and Compatibility Using Biodiesel-Bioethanol-Diesel Blends in Compression-Ignition Engines
,”
Energy Convers. Manage.
,
128
(
15
), pp.
66
81
. 10.1016/j.enconman.2016.08.072
3.
Fazal
,
M. A.
,
Haseeb
,
A. S. M. A.
, and
Masjuki
,
H. H.
,
2014
, “
A Critical Review on the Tribological Compatibility of Automotive Materials in Palm Biodiesel
,”
Energy Convers. Manage.
,
79
, pp.
180
186
. 10.1016/j.enconman.2013.12.002
4.
Thangarasu
,
V.
,
Balaji
,
B.
, and
Ramanathan
,
A.
,
2019
, “
Experimental Investigation of Tribo—Corrosion and Engine Characteristics of Aegle Marmelos Correa Biodiesel and its Diesel Blends on Direct Injection Diesel Engine
,”
Energy
,
171
, pp.
879
892
. 10.1016/j.energy.2019.01.079
5.
Hamdan
,
S. H.
,
Chong
,
W. W. F.
,
Ng
,
J. H.
,
Ghazali
,
M. J.
, and
Wood
,
R. J. K.
,
2017
, “
Influence of Fatty Acid Methyl Ester Composition on Tribological Properties of Vegetable Oils and Duck fat Derived Biodiesel
,”
Tribol. Int.
,
113
, pp.
76
82
. 10.1016/j.triboint.2016.12.008
6.
Fazal
,
M. A.
,
Haseeb
,
A. S. M. A.
, and
Masjuki
,
H. H.
,
2013
, “
Investigation of Friction and Wear Characteristics of Palm Biodiesel
,”
Energy Convers. Manage.
,
67
, pp.
251
256
. 10.1016/j.enconman.2012.12.002
7.
Habibullah
,
M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Zulkifli
,
N. W. M.
,
Masum
,
B. M.
,
Arslan
,
A.
, and
Gulzar
,
M.
,
2015
, “
Friction and Wear Characteristics of Calophyllum Inophyllum Biodiesel
,”
Ind. Crops Prod.
,
76
, pp.
188
197
. 10.1016/j.indcrop.2015.05.042
8.
Balakumar
,
R.
,
Sriram
,
G.
, and
Arumugam
,
S.
,
2018
, “
Effect of Lubricant Contaminated with Waste Ayurvedic oil Biodiesel on Tribological Behavior of Cylinder Liner-Piston Ring Tribo Pair Material
,”
Mater. Today: Proc.
,
5
(
5
), pp.
13220
13226
. 10.1016/j.matpr.2018.02.312
9.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2019
, “
Binary Biodiesel Blend Endurance Characteristics in a Compression Ignition Engine
,”
J. Energy Resour. Technol.
,
141
(
3
), p.
032204
. 10.1115/1.4041545
10.
Singh
,
Y.
,
Singla
,
A.
, and
Singh
,
A. K.
,
2017
, “
Tribological Characteristics of Mongongo-oil-Based Biodiesel Blended Lubricant, Energy Sources, Part A: Recovery
,”
Util. Environ. Eff.
,
39
(
3
), pp.
332
338
. 10.1080/15567036.2016.1176093
11.
Peng
,
D. X.
,
2016
, “
Tribological and Emission Characteristics of Indirect Ignition Diesel Engine Fueled with Waste Edible oil
,”
Ind. Lubr. Tribol.
,
68
(
5
), pp.
554
560
. 10.1108/ILT-10-2015-0151
12.
Singh
,
P.
, and
Chauhan
,
V. S. R.
,
2017
, “
Influence of Temperature on Tribological Performance of Dual Biofuel
,”
Fuel
,
207
, pp.
751
762
. 10.1016/j.fuel.2017.05.094
13.
Gulzar
,
M.
,
Maszuki
,
H. H.
,
Varman
,
M.
,
Kalam
,
M. A.
,
Zulkifli
,
N. W. M.
,
Mufti
,
R. A.
,
Liaquat
,
A. M.
,
Zahid
,
R.
, and
Arslan
,
A.
,
2016
, “
Effects of Biodiesel Blends on Lubricating oil Degradation and Piston Assembly Energy Losses
,”
Energy
,
111
, pp.
713
721
. 10.1016/j.energy.2016.05.132
14.
Goodrum
,
J. W.
, and
Geller
,
D. P.
,
2005
, “
Influence of Fatty Acid Methyl Esters From Hydroxylated Vegetable Oils on Diesel Fuel Lubricity
,”
Bioresour. Technol.
,
96
(
7
), pp.
851
855
. 10.1016/j.biortech.2004.07.006
15.
Hu
,
J.
,
Du
,
Z.
,
Li
,
C.
, and
Min
,
E.
,
2005
, “
Study on the Lubrication Properties of Biodiesel as Fuel Lubricity Enhancers
,”
Fuel
,
84
, pp.
1601
1606
.
16.
Chourasia
,
S.
,
Patel
,
P. D.
,
Lakdawala
,
A.
, and
Patel
,
R. N.
,
2018
, “
Study on Tribological Behavior of Biodiesel-Diethyl Ether (B20A4) Blend for Long run Test on Compression Ignition Engine
,”
Fuel
,
230
(
15
), pp.
64
77
. 10.1016/j.fuel.2018.05.055
17.
Gopal
,
K. N.
,
Mana
,
A. P.
, and
Ashok
,
B.
,
2018
, “
Tribological Characteristics of Pongamia oil Methyl Ester
,”
J. Tribol.
,
17
, pp.
65
76
.
18.
Wain
,
K. S.
,
Perez
,
J. M.
,
Chapman
,
E.
, and
Boehman
,
A. L.
,
2005
, “
Alternative and low Sulfur Fuel Options: Boundary Lubrication Performance and Potential Problems
,”
Tribol. Int.
,
38
(
3
), pp.
313
319
. 10.1016/j.triboint.2004.08.014
19.
Agarwal
,
A. K.
,
2007
, “
Biofuels (Alcohols and Biodiesel) Applications as Fuels for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
33
(
3
), pp.
233
271
. 10.1016/j.pecs.2006.08.003
20.
Anastopoulos
,
G.
,
Lois
,
E.
,
Karonis
,
D.
,
Kalligeros
,
S.
, and
Zannikos
,
F.
,
2005
, “
Impact of Oxygen and Nitrogen Compounds on the Lubrication Properties of low Sulfur Diesel Fuels
,”
Energy
,
30
(
2–4
), pp.
415
426
. 10.1016/j.energy.2004.04.026
21.
Ramadhas
,
A. S.
,
Jayaraj
,
S.
, and
Muraleedharan
,
C.
,
2005
, “
Characterization and Effect of Using Rubber Seed oil as Fuel in the Compression Ignition Engines
,”
Renewable Energy
,
30
(
5
), pp.
795
803
. 10.1016/j.renene.2004.07.002
22.
Fraer
,
R.
,
Dinh
,
H.
,
Proc
,
K.
,
McCormick
,
R. L.
,
Chandler
,
K.
, and
Buchholz
,
B.
Operating Experience and Teardown Analysis for Engines Operated on Biodiesel Blends (B20)
, SAE Technical Paper No. 2005-01-3641.
23.
Gopal
,
K. N.
, and
Raj
,
R. T. K.
,
2016
, “
Effect of Pongamia oil Methyl Ester—Diesel Blend on Lubricating oil Degradation of di Compression Ignition Engine
,”
Fuel
,
165
, pp.
105
114
. 10.1016/j.fuel.2015.10.031
24.
Pandey
,
A.
,
Nandgaonkar
,
M.
,
Pandey
,
U.
, and
Suresh
,
S.
Experimental Investigation of the Effect of Karanja Oil Biodiesel With Cerium Oxide Nano Particle Fuel Additive on Lubricating Oil Tribology and Engine Wear in a Heavy Duty 38.8L, 780HP Military CIDI Diesel Engine
, SAE Technical Paper No. 2018-01-1753.
25.
Dwivedi
,
D.
,
Agarwal
,
A. K.
, and
Sharma
,
M.
,
2006
, “
Particulate Emission Characterization of a Biodiesel vs Diesel-Fueled Compression Ignition Transport Engine: A Comparative Study
,”
Atmos. Environ.
,
40
(
29
), pp.
5586
5595
. 10.1016/j.atmosenv.2006.05.005
26.
Ruggiero
,
A.
,
D’Amato
,
R.
,
Merola
,
M.
,
Valasek
,
P.
, and
Muller
,
M.
,
2017
, “
Tribological Characterization of Vegetal Lubricants: Comparative Experimental Investigation on Jetropha Curcas L. oil, Rapeseed Methyl Ester oil, Hydrotreated Rapeseed oil
,”
Tribol. Int.
,
109
, pp.
529
540
. 10.1016/j.triboint.2017.01.030
27.
Dhar
,
A.
, and
Agarwal
,
A. K.
,
2014
, “
Experimental Investigations of Effect of Karanja Biodiesel on Tribological Properties of Lubricating oil in a Compression Ignition Engine
,”
Fuel
,
130
, pp.
112
119
. 10.1016/j.fuel.2014.03.066
28.
Suthisripok
,
T.
, and
Semsamran
,
P.
,
2018
, “
The Impact of Biodiesel B100 on a Small Agricultural Diesel Engine
,”
Tribol. Int.
,
128
, pp.
397
409
. 10.1016/j.triboint.2018.07.042
29.
Patel
,
C. K.
,
Chandra
,
K.
,
Hwang
,
J.
,
Agarwal
,
R. A.
,
Gupta
,
N.
,
Bae
,
C.
,
Gupta
,
T.
, and
Agarwal
,
A. K.
,
2019
, “
Comparative Compression Ignition Engine Performance, Combustion, and Emission Characteristics, and Trace Metals in Particulate From Waste Cooking oil, Jatropha and Karanja oil Derived Biodiesels
,”
Fuel
,
236
(
15
), pp.
1366
1376
. 10.1016/j.fuel.2018.08.137
30.
Arumugam
,
S.
,
Sriram
,
G.
, and
Ellappan
,
R.
,
2014
, “
Bio—Lubricant—Biodiesel Combination of Rapeseed oil: An Experimental Investigation on Engine oil Tribology, Performance and Emissions of Variable Compression Engine
,”
Energy
,
72
, pp.
618
627
. 10.1016/j.energy.2014.05.087
31.
Kalam
,
M. A.
, and
Masjuki
,
H. H.
,
2002
, “
Biodiesel From Palmoil—an Analysis of its Properties and Potential
,”
Biomass Bioenergy
,
23
(
6
), pp.
471
479
. 10.1016/S0961-9534(02)00085-5
You do not currently have access to this content.