Abstract

Ground source (geothermal) heat pumps (GSHPs) can meet the thermal demands of buildings in an energy-efficient manner. The current high installation costs and long payback period limit the attractiveness of GSHP installation in the United States. Vertical borehole ground heat exchangers (VBGHEs), which are commonly used in GSHP systems, contribute most to the cost premium of GSHPs. Reducing the cost of VBGHEs could help increase market penetration of GSHP systems. This paper reviews recent developments for VBGHEs, including improvements in borehole heat transfer and borehole field layout, integration with thermal energy storage, and new design tools. Improvements in the borehole design and materials are more likely to be justified when the ground has high thermal conductivity. Integrating thermal energy storage can provide additional value to the GSHP system, especially when flexible electric demand at buildings becomes more valuable. Advanced design tools for VBGHEs that account for the thermal response of irregularly shaped borehole fields and that are more closely integrated with whole-building energy simulation programs may facilitate more innovations and optimization of GSHP system designs.

References

1.
Hughes
,
P. J.
,
008
,
Geothermal (Ground-Source) Heat Pumps: Market Status, Barriers to Adoption, and Actions to Overcome Barriers
,
ORNL/TM-2008/232
,
Oak Ridge National Laboratory
,
Oak Ridge, TN
.
2.
Liu
,
X.
,
Hughes
,
P.
,
McCabe
,
K.
,
Spitler
,
J.
, and
Southard
,
L.
,
2019a
,
GeoVision Analysis: Thermal Applications Task Force Report—Geothermal Heat Pumps
,
ORNL/TM-2019/502
,
Oak Ridge National Laboratory
,
Oak Ridge, TN
.
3.
ANSI (American National Standards Institute)
,
2016
, “
Design and Installation of Ground Source Heat Pump Systems for Commercial and Residential Buildings
,”
ANSI/CSA C448 Series-16
,
American National Standards Institute
.
4.
Lund
,
J. W.
,
2001
, “
Geothermal Heat Pumps—An Overview
,”
Q. Bull., Geo-Heat Center
,
22
(
1
), pp.
1
2
.
5.
Liu
,
X.
,
Malhotra
,
M.
,
Walburger
,
A.
,
Skinner
,
J. L.
, and
Blackketter
,
D. M.
,
2016
, “
Performance Analysis of a Ground-Source Heat Pump System Using Mine Water as Heat Sink and Source
,”
ASHRAE Trans.
,
122
(
2
), pp.
160
172
.
6.
Bailey
,
M. T.
,
Gandy
,
C. J.
,
Watson
,
I. A.
,
Wyatt
,
L. M.
, and
Jarvis
,
A. P.
,
2016
, “
Heat Recovery Potential of Mine Water Treatment Systems in Great Britain
,”
Int. J. Coal Geol.
,
164
, pp.
77
84
.
7.
Lindstrom
,
H. O.
,
1985
, “
Experiences With a 3.3 mw Heat Pump Using Sewage Water as Heat Source
,”
J. Heat Recovery Syst.
,
5
(
1
), pp.
33
38
.
8.
Ni
,
L.
,
Tian
,
J.
,
Shen
,
C.
, and
Zhao
,
J.
,
2016
, “
Experimental Study of the Separation Performance of a Novel Sewage Hydrocyclone Used in Sewage Source Heat Pump
,”
Appl. Therm. Eng.
,
106
, pp.
1300
1310
.
9.
Liu
,
X.
,
Polsky
,
Y.
,
Qian
,
D.
, and
McDonald
,
J.
,
2018
,
Analysis of Cost Reduction Potential of Vertical Bore Ground Heat Exchanger
,
ORNL/TM-2018/756
,
Oak Ridge National Laboratory
,
Oak Ridge, TN
.
10.
Henderson
,
H.
,
Genzel
,
N.
, and
Paton
,
C.
,
2017
, “
Analysis of Water Furnace Geothermal Heat Pump Sites in New York State with Symphony Monitoring Systems
,”
Final Report 18-03
.
11.
Im
,
P.
,
Hughes
,
P.
, and
Liu
,
X.
,
2012
, “
Demonstration and Performance Monitoring of Foundation Heat Exchangers (FHX) in Ultra-high Energy Efficient Research Homes
,”
Proceedings of the 2012 ACEEE Summer Study on Energy Efficiency in Building
,
Pacific Grove, CA
,
Aug. 12–17
.
12.
NYSERDA (New York State Energy Research and Development Authority)
,
2017
,
Renewable Heating and Cooling Policy Framework: Options to Advance Industry Growth and Markets in New York
, https://www.nyserda.ny.gov/-/media/files/publications/ppser/nyserda/rhc-framework.pdf.
13.
Holmberg
,
H.
,
Acuña
,
J.
,
Næss
,
E.
, and
Sønju
,
O. K.
,
2016
, “
Thermal Evaluation of Coaxial Deep Borehole Heat Exchangers
,”
Renewable Energy
,
97
, pp.
65
76
.
14.
Gehlin
,
S. E. A.
,
Spitler
,
J. D.
, and
Hellström
,
G.
,
2016
, “
Deep Boreholes for Ground Source Heat Pump Systems: Scandinavian Experience and Future Prospect
,”
ASHRAE Winter Conference
,
Orlando, FL
,
Jan. 23–27
.
15.
Guillaume
,
F.
,
2011
, “
Analysis of a Novel Pipe in Pipe Coaxial Borehole Heat Exchanger
,”
PhD dissertation
,
KTH Industrial Engineering and Management
,
Stockholm, Sweden
.
16.
Guo
,
H.
, and
Meggers
,
F.
,
2019
, “
Charging and Discharging a Coaxial Borehole Heat Exchanger as a Battery
,”
Proceedings of 16th IBPSA International Conference & Exhibition Building Simulation
,
Rome, Italy
,
Sept. 2–4
, pp.
1749
1754
.
17.
Boughanmi
,
H.
,
Lazâar
,
M.
,
Bouadila
,
S.
, and
Farhat
,
A.
,
2015
, “
Thermal Performance of a Conic Basket Heat Exchanger Coupled to a Geothermal Heat Pump for Greenhouse Cooling Under Tunisian Climate
,”
Energy Build.
,
104
, pp.
87
96
.
18.
Cordts
,
D.
,
2011
, “
The GeoColumnTM Geothermal Heat Pump Company
,”
Geothermal Energy Workshop
,
Stony Brook University
,
Apr. 13
.
19.
Warner
,
J.
,
Liu
,
X.
,
Shi
,
L.
,
Qu
,
M.
, and
Zhang
,
M.
,
2020
, “
A Novel Shallow Bore Ground Heat Exchanger for Ground Source Heat Pump Applications—Model Development and Validation
,”
Appl. Therm. Eng.
,
164
, p.
114460
.
20.
Bertermann
,
D.
,
Bernardi
,
A.
,
Pockelé
,
L.
,
Galgaro
,
A.
,
Cultrera
,
M.
,
de Carli
,
M.
, and
Müller
,
J.
,
2018
, “
European Project “Cheap-GSHPs”: Installation and Monitoring of Newly Designed Helicoidal Ground Source Heat Exchanger on the German Test Site
,”
Environ. Earth Sci.
,
77
(
5
), pp.
1
13
.
21.
Najib
,
A.
,
Zarrella
,
A.
,
Narayanan
,
V.
,
Grant
,
P.
, and
Harrington
,
C.
,
2019
, “
A Revised Capacitance Resistance Model for Large Diameter Shallow Bore Ground Heat Exchanger
,”
Appl. Therm. Eng.
,
2019
(
162
), p.
114305
.
22.
Zhang
,
M.
,
Liu
,
X.
,
Biswas
,
K.
, and
Warner
,
J.
,
2019
, “
A Three-Dimensional Numerical Investigation of a Novel Shallow Bore Ground Heat Exchanger Integrated With Phase Change Material
,”
Appl. Therm. Eng.
,
162
, p.
114297
.
23.
Gonthier
,
S.
,
2012
, “
GEOPERFORMX Thermally Enhanced Pipe for Geothermal Applications
,”
2012 Annual Conference of International Ground Source Heat Pump Association
,
Indianapolis, IN
,
Oct. 4
.
24.
Mehrjerdi
,
A. K.
,
Adl-Zarrabi
,
B.
,
Cho
,
S.-W.
, and
Skrifvars
,
M.
,
2013
, “
Mechanical and Thermo-physical Properties of High-Density Polyethylene Modified With Talc
,”
J. Appl. Polym. Sci.
,
129
(
4
), pp.
2128
2138
.
25.
Mehrjerdi
,
A. K.
,
Mengistu
,
B. A.
,
Åkesson
,
D.
, and
Skrifvars
,
M.
,
2014
, “
Effects of a Titanate Coupling Agent on the Mechanical and Thermo-physical Properties of Talc-Reinforced Polyethylene Compounds
,”
J. Appl. Polym. Sci.
,
131
(
13
), p.
40449
.
26.
Raymond
,
J.
,
Frenette
,
M.
,
Leger
,
A.
,
Magni
,
E.
, and
Therrien
,
R.
,
2011
, “
Numerical Modeling of Thermally Enhanced Pipe Performances in Vertical Ground Heat Exchangers
,”
ASHRAE Trans.
,
117
(
1
), pp.
899
907
.
27.
Mehrjerdi
,
A.
,
Åkesson
,
D.
, and
Skrifvars
,
M.
,
2020
, “
Influence of Talc Fillers on Bimodal Polyethylene Composites for Ground Heat Exchangers
,”
J. Appl. Polym. Sci.
,
137
(
42
), p.
49290
.
28.
Ignatowicz
,
M.
,
Acuña
,
J.
,
Melinder
,
Å
, and
Palm
,
B.
,
2015a
, “
Investigation of Ethanol Based Secondary Fluids With Denaturing Agents and Other Additives Used for Borehole Heat Exchangers
,”
Proceedings World Geothermal Congress 2015
,
Melbourne, Australia
,
Apr. 19–25
.
29.
Ignatowicz
,
M.
,
Melinder
,
Å
, and
Palm
,
B.
,
2015b
, “
Ethyl and Isopropyl Alcohol Blends as Alternative Secondary Fluids
,”
Proceedings of 24th IIR International Congress of Refrigeration, ICR 2015
,
International Institute of Refrigeration
,
Yokohama, Japan
,
Aug 16–22, 2015
, pp.
2224
2231
.
30.
Ignatowicz
,
M.
,
Barcarolo
,
L.
,
Melinder
,
A.
,
Molinaroli
,
L.
, and
Palm
,
B.
,
2019
, “
Cesium and Ammonium Salts as Low Temperature Secondary Fluids
,”
Proceedings of 25th IIR International Congress of Refrigeration, ICR 2019
,
International Institute of Refrigeration
,
Montreal, Quebec
,
Aug. 24–30, 2019
, pp.
2568
2575
.
31.
Diglio
,
G.
,
Roselli
,
C.
,
Sasso
,
M.
, and
Channabasappa
,
U. J.
,
2018
, “
Borehole Heat Exchanger With Nanofluids as Heat Carrier
,”
Geothermics
,
72
, pp.
112
123
.
32.
Kapıcıoğlu
,
A.
, and
Esen
,
H.
,
2020
, “
Experimental Investigation on Using Al2O3/Ethylene Glycol-Water Nano-fluid in Different Types of Horizontal Ground Heat Exchangers
,”
Appl. Therm. Eng.
,
165
, p.
114559
.
33.
IGSHPA
,
2000
,
Grouting for Vertical Geothermal Heat Pump Systems – Engineering Design and Field Procedures Manual
,
Oklahoma State University
,
Stillwater, OK
.
34.
Tiedje
,
E.
, and
Guo
,
P.
,
2014
, “
Thermal Conductivity of Bentonite Grout Containing Graphite or Chopped Carbon Fibers
,”
J. Mater. Civil Eng.
,
26
(
7
), p.
06014013
.
35.
Bottarelli
,
M.
,
Bortoloni
,
M.
,
Georgiev
,
A.
,
Aydın
,
A. A.
,
Su
,
Y.
, and
Yousif
,
C.
,
2013
, “
Ground-source Heat Pumps: Benefits of Using Phase Change Materials
,”
Sustainable Energy Storage in Buildings Conference
,
Trinity College
,
Dublin, Ireland
, pp.
29
33
.
36.
Qi
,
D.
,
Pu
,
L.
,
Sun
,
F.
, and
Li
,
Y.
,
2016
, “
Numerical Investigation on Thermal Performance of Ground Heat Exchangers Using Phase Change Materials as Grout for Ground Source Heat Pump System
,”
Appl. Therm. Eng.
,
106
, pp.
1023
1032
.
37.
Bayer
,
P.
,
de Paly
,
M.
, and
Beck
,
M.
,
2014
, “
Strategic Optimization of Borehole Heat Exchanger Field for Seasonal Geothermal Heating and Cooling
,”
Appl. Energy
,
136
, pp.
445
453
.
38.
Hammock
,
C.
, and
Sullens
,
S.
,
2017
,
Coupling Geothermal Heat Pumps With Underground Seasonal Thermal Energy Storage
(final report), Report No. ESTCP Project EW-201135, March 2017
.
39.
Spitler
,
J. D.
,
Cook
,
J. C.
, and
Liu
,
X.
,
2020a
, “
A Preliminary Investigation on the Cost Reduction Potential of Optimizing Bore Fields for Commercial Ground Source Heat Pump Systems
,”
Proceedings of the 45th Workshop on Geothermal Reservoir Engineering
,
Stanford University
,
Stanford, CA
,
Feb. 10–12
.
40.
Cimmino
,
M.
,
2018
,
Pygfunction: An Open-Source Toolbox for the Evaluation of Thermal
, eSim 2018,
IBPSA Canada
,
Montreál
,
492
501
.
41.
Nordell
,
B.
,
2000
, “
Large-Scale Thermal Energy Storage
,”
2000
,
WinterCities'2000
,
Luleå, Sweden
,
Feb. 14
.
42.
Sibbitt
,
B.
,
McClenahan
,
D.
,
Djebbar
,
R.
,
Thornton
,
J.
,
Wong
,
B.
,
Carriere
,
J.
, and
Kokko
,
J.
,
2011
, “
The Performance of a High Solar Fraction Seasonal Storage District Heating System—Five Years in Operation
,”
Energy Procedia
,
30
, pp.
856
865
.
43.
Guo
,
F.
,
Zhu
,
X.
,
Zhang
,
J.
, and
Yang
,
X.
,
2020
, “
Large-Scale Living Laboratory of Seasonal Borehole Thermal Energy Storage System for Urban District Heating
,”
Appl. Energy
,
264
, p.
114763
.
44.
Gehlin
,
S.
,
2016
,
Advances in Ground-Source Heat Pump Systems
,
S. J.
Rees
, ed.,
Woodhead Publishing
,
Amsterdam
, pp.
295
327
.
45.
Wang
,
H.
,
Qi
,
C.
,
Wang
,
E.
, and
Zhao
,
J.
,
2009
, “
A Case Study of Underground Thermal Storage in a Solar-Ground Coupled Heat Pump System for Residential Buildings
,”
Renewable Energy
,
34
(
1
), pp.
307
314
. https://doi:10.1016/j.renene.2008.04.024 10.1016/j.renene.2008.04.024
46.
Hirmiz
,
R.
,
Teamah
,
H. M.
,
Lightstone
,
M. F.
, and
Cotton
,
J. S.
,
2019
, “
Performance of Heat Pump Integrated Phase Change Material Thermal Storage for Electric Load Shifting in Building Demand Side Management
,”
Energy Build.
,
190
, pp.
103
118
.
47.
Gao
,
Q.
,
Li
,
M.
,
Yu
,
M.
,
Spitler
,
J. D.
, and
Yan
,
Y.
,
2009
, “
Review of Development From GSHP to UTES in China and Other Countries
,”
Renewable Sustainable Energy Rev.
,
13
(
6–7
), pp.
1383
1394
.
48.
Kavanaugh
,
S. P.
,
1998
, “
A Design Method for Hybrid Ground-Source Heat Pumps
,”
ASHRAE Trans.
,
104
(
2
), p.
691
.
49.
Arteconi
,
A.
,
Hewitt
,
N. J.
, and
Polonara
,
F.
,
2013
, “
Domestic Demand-Side Management (DSM): Role of Heat Pumps and Thermal Energy Storage (TES) Systems
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
155
165
.
50.
Qian
,
D.
,
Liu
,
X.
, and
O’Neill
,
Z.
,
2020
, “
A Simulation-Based Investigation on the Performance of a Hybrid Ground Source Heat Pump System Integrated With Thermal Energy Storage
,”
Proceedings of the 2020 Annual ASHRAE Conference
,
June 29–July 2
.
51.
Dassault Systèmes AB
,
2017
,
Dymola Dynamic Modeling Laboratory User’s Manual Volume 2
.
52.
LBNL (Lawrence Berkeley National Laboratory)
,
2019
,
Modelica Building Library
, https://simulationresearch.lbl.gov/modelica/
53.
Liu
,
X.
,
Shi
,
L.
,
Qu
,
M.
, and
Warner
,
J.
,
2019b
, “
A Preliminary Study of a Novel Heat Pump Integrated Underground Thermal Energy Storage for Shaping Electric Demand of Buildings
,”
GRC Trans.
,
43
.
54.
Shi
,
L.
,
Qu
,
M.
, and
Liu
,
X.
,
2021
, “
A Novel Geothermal Heat Pump System Integrated with Underground Thermal Storage for Shifting Building Electric Demands
,”
Proceedings of the 13th IEA Heat Pump Conference
,
Jeju, South Korea, Apr. 25–29
.
55.
Renaldi
,
R.
,
Kiprakis
,
A.
, and
Friedrich
,
D.
,
2017
, “
An Optimisation Framework for Thermal Energy Storage Integration in a Residential Heat Pump Heating System
,”
Appl. Energy
,
186
, pp.
520
529
.
56.
Yan
,
C.
,
Xue
,
X.
,
Wang
,
S.
, and
Cui
,
B.
,
2015
, “
A Novel Air-Conditioning System for Proactive Power Demand Response to Smart Grid
,”
Energy Convers. Manage.
,
102
, pp.
239
246
.
57.
Shi
,
L.
,
Liu
,
X.
,
Qu
,
M.
,
Li
,
Z.
, and
Liu
,
G.
,
2020a
, “
An Assessment of Impacts on Electric End-Use Load Profile of a Typical Residential Building From a Ground Source Heat Pump Systems Integrated With Underground Thermal Energy Storage
,”
GRC Trans.
,
44
.
58.
EIA (US Energy Information Administration)
,
2018
, “
Residential Energy Consumption Survey: Space Heating in U.S. Homes by Housing Unit Type
,” 2015,
EIA
, https://www.eia.gov/consumption/residential/data/2015/hc/php/hc6.1.php
59.
Shi
,
L.
,
Liu
,
X.
,
Qu
,
M.
,
Li
,
Z.
, and
Liu
,
G.
,
2020b
,
A Preliminary Assessment of Potential Market Penetration and Impacts to the Electric Grids of a Ground Source Heat Pump System Integrated With Underground Thermal Energy Storage
, ORNL/TM-2020/1481,
Oak Ridge National Laboratory
,
Oak Ridge, TN
.
60.
Zhao
,
G.
,
Li
,
K.
,
Liu
,
C.
,
Jia
,
L.
, and
Mahlalela
,
B. M.
,
2019
, “
Modeling of a Space Heating System Coupled With Underground Energy Storage
,”
Math. Geosci.
,
51
(
3
), pp.
373
400
.
61.
GLHEPro 5.0 For Windows User’s Guide
,
2016
,
Oklahoma State University
.
62.
Gaia Geothermal, LLC
,
2016
,
Ground Loop Design: Geothermal Design Studio 2016 Edition User's Manual
.
63.
Kavanaugh
,
S.
,
2012
,
Ground Source Heat Pump System Designer GshpCalc Version 5.0 An Instruction Guide for Using a Design Tool for Vertical Ground-Coupled, Groundwater and Surface Water Heat Pumps Systems
,
University of Alabama
,
Northport, AL
.
64.
BLOCON
,
2017
, “
Earth Energy Designer (EED) Version 4 Update Manual
,” https://buildingphysics.com/eed-2/, Accessed 13 February 2019.
65.
Ahmadfard
,
M.
,
2018
, “
A Comprehensive Review of Vertical Ground Heat Exchangers Sizing Models With Suggested Improvements
,”
PhD thesis
,
École Polytechnique de Montréal
, https://publications.polymtl.ca/3034/
66.
Park
,
S.
, and
Kim
,
E.
,
2019
, “
Optimal Sizing of Irregularly Arranged Boreholes Using Duct-Storage Model
,”
Sustainability
,
2019
(
16
), p.
11
.
67.
Kim
,
D.
,
Zuo
,
W.
,
Braun
,
J.
, and
Wetter
,
M.
,
2013
, “
Comparisons of Building System Modeling Approaches for Control System Design
,”
Proceedings of BS 2013: 13th Conference of the International Building Performance Simulation Association
,
Chambéry, France
,
Aug. 26–28
.
68.
Liu
,
X.
, and
Hellstrom
,
G.
,
2006
, “
Enhancements of an Integrated Simulation Tool for Ground-Source Heat Pump System Design and Energy Analysis
,”
Proceedings of the 10th International Conference on Thermal Energy Storage
,
Pomona, NJ
,
May 31–June 2
.
69.
Wang
,
S.
,
Liu
,
X.
, and
Gates
,
S.
,
2015
, “
An Introduction of New Features for Conventional and Hybrid GSHP Simulations in eQUEST 3.7
,”
Energy Build.
,
105
, pp.
368
376
.
70.
Sankaranarayanan
,
K. P.
,
2005
, “
Modeling, Verification and Optimization of Hybrid Ground Source Heat Pump Systems in EnergyPlus
,”
MS thesis
,
Oklahoma State University
,
Stillwater, OK
.
71.
Murugappan
,
A.
,
2002
, “
Implementing Ground Source Heat Pump and Ground Loop Heat Exchanger Models in the EnergyPlus Simulation Environment
,”
MS thesis
,
Oklahoma State University
,
Stillwater, OK
.
72.
Park
,
S.-H.
,
Jang
,
Y.-S.
, and
Kim
,
E.-J.
,
2018
, “
Using Duct Storage (DST) Model for Irregular Arrangements of Borehole Heat Exchangers
,”
Energy
,
142
, pp.
851
861
.
73.
Bose
,
J. E.
,
Parker
,
J. D.
, and
McQuiston
,
F. C.
,
1985
,
Design/Data Manual for Closed-Loop GroundCoupled Heat Pump Systems
,
ASHRAE
,
Atlanta, GA
.
74.
OSU
,
1988
,
Closed-Loop/Ground-Source Heat Pump Systems Installation Guide
.
75.
Kavanaugh
,
S.
,
1995
, “
A Design Method for Commercial Ground-Coupled Heat Pumps
,”
ASHRAE Trans.
,
101
(
Pt. 2
), pp.
1088
1094
.
76.
Cullin
,
J. R.
,
Spitler
,
J. D.
,
Montagud
,
C.
,
Ruiz-Calvo
,
F.
,
Rees
,
S. J.
,
Naicker
,
S. S.
,
Konecný
,
P.
, and
Southard
,
L. E.
,
2015
, “
Validation of Vertical Ground Heat Exchanger Design Methodologies
,”
Sci. Technol. Built Environ.
,
21
(
2
), pp.
137
149
.
77.
ASHRAE
,
2015
, “Chapter 34-Geothermal Energy,”
ASHRAE Handbook e Applications
,
ASHRAE
,
Atlanta, GA
.
78.
Eskilson
,
P.
,
1986
,
Superposition Borehole Model: Manual for Computer Code
,
University of Lund
,
Lund, Sweden
.
79.
Eskilson
,
P.
, and
Claesson
,
J.
,
1988
, “
Simulation Model for Thermally Interacting Heat Extraction Boreholes
,”
Numer. Heat Transfer
,
13
(
2
), pp.
149
165
.
80.
Hellström
,
G.
,
1991
, “
Ground Heat Storage. Thermal Analyses of Duct Storage Systems
,”
Ph.D. thesis
,
University of Lund
,
Sweden
.
81.
Javed
,
S.
,
Ornes
,
I. R.
,
Myrup
,
M.
, and
Dokka
,
T. H.
,
2019
, “
Design Optimization of the Borehole System for a Plus-Energy Kindergarten in Oslo, Norway
,”
Archit. Eng. Des. Manage.
,
15
(
3
), pp.
181
195
.
82.
Claesson
,
J.
, and
Eskilson
,
P.
,
1985
, “
Thermal Analysis of Heat Extraction Boreholes
,”
Proceedings of 3rd International Conference on Energy Storage for Building Heating and Cooling ENERSTOCK 85
,
Toronto, Canada
,
Sept. 22–26
.
83.
Cimmino
,
M.
, and
Bernier
,
M.
,
2014
, “
A Semi-analytical Method to Generate g-Functions for Geothermal Bore Fields
,”
Int. J. Heat Mass Transfer
,
70
, pp.
641
650
.
84.
Cimmino
,
M.
,
2019a
, “pygfunction GitHub Page,” https://github.com/MassimoCimmino/pygfunction, Accessed 24 October 2019
85.
Cimmino
,
M.
,
2019b
, “
Semi-analytical Method for g-Function Calculation of Bore Fields With Series- and Parallel-Connected Boreholes
,”
Sci. Technol. Built Environ.
,
25
(
8
), pp.
1007
1022
.
86.
Spitler
,
J. D.
,
Cook
,
J. C.
, and
Liu
,
X.
,
2020b
, “
Recent Experiences Calculating g-Functions for Use in Simulation of Ground Heat Exchangers
,”
Proc. GRC Trans.
,
44
.
87.
Dusseault
,
B.
, and
Pasquier
,
P.
,
2019
, “
Efficient g-Function Approximation With Artificial Neural Networks for a Varying Number of Boreholes on a Regular or Irregular Layout
,”
Sci. Technol. Built Environ.
,
25
(
8
), pp.
1023
1035
.
88.
Pasquier
,
P.
,
2019
,
Email to J. D. Spitler
.
89.
Ibáñez
,
S.
, and
Hermanns
,
M.
,
2020
, “
Analysis of the Long-Term Thermal Response of Geothermal Heat Exchangers by Means of Asymptotic Expansion Techniques
,”
Sci. Technol. Built Environ.
,
26
(
3
), pp.
400
413
.
90.
Lazzarotto
,
A.
,
2015
, “
Developments in Ground Heat Storage Modeling
,”
PhD dissertation
,
KTH Industrial Engineering and Management, Stockholm
,
Sweden
.
91.
Monzó
,
P.
,
2018
, “
Modelling and Monitoring Thermal Response of the Ground in Borehole Fields
,”
PhD dissertation
,
KTH Industrial Engineering and Management
,
Stockholm, Sweden
.
92.
Yavuzturk
,
C.
, and
Spitler
,
J. D.
,
1999
, “
A Short Time Step Response Factor Model for Vertical Ground Loop Heat Exchangers
,”
ASHRAE Trans.
,
105
(
2
), pp.
475
485
.
93.
Xu
,
X.
, and
Spitler
,
J. D.
,
2006
, “
Modelling of Vertical Ground Loop Heat Exchangers With Variable Convective Resistance and Thermal Mass of the Fluid
,”
Proceedings of 10th International Conference on Thermal Energy Storage: Ecostock 2006
,
Pomona, NJ
,
May 31–June 2
.
94.
Beier
,
R. A.
, and
Spitler
,
J. D.
,
2016
, “
Weighted Average of Inlet and Outlet Temperatures in Borehole Heat Exchangers
,”
Appl. Energy
,
174
, pp.
118
129
.
95.
Brussieux
,
Y.
, and
Bernier
,
M.
,
2019
, “
Universal Short Time g-Functions: Generation and Application
,”
Sci. Technol. Built Environ.
,
25
(
8
), pp.
993
1006
.
96.
Pasquier
,
P.
,
Zarrella
,
A.
, and
Labib
,
R.
,
2018
, “
Application of Artificial Neural Networks to Near-Instant Construction of Short-Term g-Functions
,”
Appl. Therm. Eng.
,
143
, pp.
910
921
.
97.
Mitchell
,
M. S.
, and
Spitler
,
J. D.
,
2020
, “
An Enhanced Vertical Ground Heat Exchanger Model for Whole-Building Energy Simulation
,”
Energies
,
13
(
16
), p.
4058
.
98.
Loveridge
,
F.
, and
Powrie
,
W.
,
2013
, “
Temperature Response Functions (G-Functions) for Single Pile Heat Exchangers
,”
Energy
,
57
, pp.
554
564
.
99.
Javed
,
S.
, and
Spitler
,
J. D.
,
2016
,
Advances in Ground-Source Heat Pump Systems
,
S. J.
Rees
, ed.,
Woodhead Publishing
,
Amsterdam
, pp.
63
95
.
100.
Javed
,
S.
, and
Spitler
,
J.
,
2017
, “
Accuracy of Borehole Thermal Resistance Calculation Methods for Grouted Single U-Tube Ground Heat Exchangers
,”
Appl. Energy
,
187
, pp.
790
806
.
101.
Claesson
,
J.
, and
Hellström
,
G.
,
2011
, “
Multipole Method to Calculate Borehole Thermal Resistances in a Borehole Heat Exchanger
,”
HVAC&R Res.
,
17
(
6
), pp.
895
911
.
102.
Claesson
,
J.
, and
Javed
,
S.
,
2018
, “
Explicit Multipole Formulas for Calculating Thermal Resistance of Single U-Tube Ground Heat Exchangers
,”
Energies
,
11
(
1
), p.
214
.
103.
Claesson
,
J.
, and
Javed
,
S.
,
2019
, “
Explicit Multipole Formulas and Thermal Network Models for Calculating Thermal Resistances of Double U-Pipe Borehole Heat Exchangers
,”
Sci. Technol. Built Environ.
,
25
(
8
), pp.
980
992
.
104.
Liu
,
X.
,
Spitler
,
J.
,
DeGraw
,
J.
,
Cook
,
J.
,
Guo
,
J.
,
Adams
,
M.
,
New
,
J.
, and
Holladay
,
S.
,
2020
,
FY20 Third Milestone Report for Advanced Techno-Economic Modeling for Geothermal Heat Pump Applications in Residential, Commercial, and Industry Buildings
,
ORNL/SPR-2020/1619
,
Oak Ridge National Laboratory
,
Oak Ridge, TN
.
105.
EnergyPlus
,
2020
, “
EnergyPlus
,” https://energyplus.net/, Accessed 6 September 2020
106.
US Department of Energy (US DOE)
,
2020
, “
OpenStudio
.” https://www.energy.gov/eere/buildings/downloads/openstudio-0
107.
Hu
,
J.
,
Doughty
,
C.
,
Dobson
,
P.
,
Nico
,
P.
, and
Wetter
,
M.
,
2020
, “
Coupling Subsurface and Above-Surface Models for Design of Borefields and Geothermal District Heating and Cooling Systems
,”
Proceedings of the 45th Workshop on Geothermal Reservoir Engineering Stanford University
,
Stanford, CA
,
Feb. 10–12
.
You do not currently have access to this content.