Abstract

Low liquid loading flow occurs very commonly in the transport of any kind of wet gas, such as in the oil and gas, the food, and the pharmaceutical industries. However, most studies that analyze this type of flow do not cover actual industry fluids and operating conditions. This study focused then on modeling this type of flow in medium-sized (6-in [DN 150] and 10-in [DN 250]) pipes, using computational fluid dynamics (CFD) simulations. When comparing with experimental data from the University of Tulsa, the differences observed between experimental and CFD data for the liquid holdup and the pressure drop seemed to fall within acceptable error, around 20%. Additionally, different pipe sections from a Colombian gas pipeline were simulated with a natural gas-condensate mixture to analyze the effect of pipe inclination and operation variables on liquid holdup, in real industry conditions. It was noticed that downward pipe inclinations favored smooth stratified flow and decreased liquid holdup in an almost linear fashion, while upward inclinations generated unsteady wavy flows, or even a possible annular flow, and increased liquid holdup and liquid entrainment into the gas phase.

References

1.
Corneliussen
,
S.
,
Couput
,
J.-P.
,
Dahl
,
E.
,
Dykesteen
,
E.
,
Frøysa
,
K.-E.
,
Malde
,
E.
,
Moestue
,
H.
,
Moksnes
,
P. O.
,
Scheers
,
L.
, and
Tunheim
,
H.
,
2005
,
Handbook of Multiphase Flow Metering
, 2nd ed.,
The Norwegian Society for Oil and Gas Measurement
, pp.
30
36
.
2.
Badie
,
S.
,
Hale
,
C. P.
,
Lawrence
,
C. J.
, and
Hewitt
,
G. F.
,
2000
, “
Pressure Gradient and Holdup in Horizontal Two-Phase Gas-Liquid Flows With Low Liquid Loading
,”
Int. J. Multiphase Flow
,
26
(
9
), pp.
1525
1543
. 10.1016/S0301-9322(99)00102-0
3.
Karami
,
H.
,
Torres
,
C. F.
,
Parsi
,
M.
,
Pereyra
,
E.
, and
Sarica
,
C.
,
2014
, “
CFD Simulations of Low Liquid Loading Multiphase Flow in Horizontal Pipelines
,”
Am. Soc. Mech. Eng. Fluids Eng. Div. FEDSM
,
2
(
1984
), pp.
1
8
. 10.1115/fedsm2014-21856
4.
Banafi
,
A.
,
Talaei
,
M. R.
, and
Ghafoori
,
M. J.
,
2014
, “
A Comprehensive Comparison of the Performance of Several Popular Models to Predict Pressure Drop in Stratified Gas-Liquid Flow With Low Liquid Loading
,”
J. Nat. Gas Sci. Eng.
,
21
, pp.
433
441
. 10.1016/j.jngse.2014.09.009
5.
Ayala
,
L. F.
, and
Adewumi
,
M. A.
,
2003
, “
Low-Liquid Loading Multiphase Flow in Natural Gas Pipelines
,”
ASME J. Energy Resour. Technol.
,
125
(
4
), pp.
284
293
. 10.1115/1.1616584
6.
Vuong
,
D. H.
,
2016
, “
Pressure Effects on Two-Phase Oil-Gas Low-Liquid-Loading Flow in Horizontal Pipes
,”
Ph.D. thesis
,
University of Tulsa
,
Tulsa, OK.
7.
Dong
,
H.
,
Zhang
,
H.
, and
Sarica
,
C.
,
2009
, “
Experimental Study of Low Concentration Sand Transport in Low Liquid Loading Water-Air Flow in Horizontal Pipes
,”
14th International Conference on Multiphase Production Technology
,
Cannes, France
,
June 17–19
.
8.
Ghorai
,
S.
, and
Nigam
,
K. D. P.
,
2006
, “
CFD Modeling of Flow Profiles and Interfacial Phenomena in Two-Phase Flow in Pipes
,”
Chem. Eng. Process. Process Intensif.
,
45
(
1
), pp.
55
65
. 10.1016/j.cep.2005.05.006
9.
Mucharam
,
L.
,
1990
, “
One-Dimensional Compositional Modeling of Gas and Condensate Flow in Pipelines
,” Ph.D. dissertation,
Pennsylvania State University
.
10.
US Climate Data
,
2016
Climate Tulsa—Oklahoma
,”
[Online]
, https://www.usclimatedata.com/climate/tulsa/oklahoma/united-states/usok0537,
Accessed October 5, 2017
.
11.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
1995
,
An Introduction to Computational Fluid Dynamics – The Finite Volume Method
, 1st ed.,
Longman Scientific & Technical
,
New York
, pp.
3
10
.
12.
Siemens
,
2016
,
STAR CCM+ Documentation
,
Siemens
,
New York
.
13.
Waclawczyk
,
T.
, and
Koronowicz
,
T.
,
2008
, “
Comparison of CICSAM and HRIC High-Resolution Schemes For Interface Capturing
,”
J. Theor. Appl. Mech.
,
46
(
2
), pp.
325
345
.
14.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
. 10.1016/0021-9991(92)90240-Y
15.
Menter
,
F. R.
,
1992
, “
Influence of Freestream Values on k-Omega Turbulence Model Predictions
,”
AIAA J.
,
30
(
6
), pp.
1657
1659
. 10.2514/3.11115
16.
Span
,
R.
,
Lemmon
,
E. W.
,
Jacobsen
,
R. T.
,
Wagner
,
W.
, and
Yokozeki
,
A.
,
2000
, “
A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures From 63.151 to 1000 K and Pressures to 2200 MPa
,”
J. Phys. Chem. Ref. Data
,
29
(
6
), pp.
1361
1433
. 10.1063/1.1349047
17.
Seibt
,
D.
,
Vogel
,
E.
,
Bich
,
E.
,
Buttig
,
D.
, and
Hassel
,
E.
,
2006
, “
Viscosity Measurements on Nitrogen
,”
J. Chem. Eng. Data
,
51
(
2
), pp.
526
533
. 10.1021/je050399c
18.
Khorami
,
A.
,
Jafari
,
S. A.
,
Mohamadi-Baghmolaei
,
M.
,
Azin
,
R.
, and
Osfouri
,
S.
,
2017
, “
Density, Viscosity, Surface Tension, and Excess Properties of DSO and Gas Condensate Mixtures
,”
Appl. Petrochem. Res.
,
7
(
2–4
), pp.
119
129
. 10.1007/s13203-017-0183-4
19.
Heidaryan
,
E.
, and
Jarrahian
,
A.
,
2013
, “
Natural Gas Viscosity Estimation Using Density Based Models
,”
Can. J. Chem. Eng.
,
91
(
6
), pp.
1183
1189
. 10.1002/cjce.21715
20.
Dranchuk
,
P. M.
, and
Abou-Kassem
,
H.
,
1975
, “
Calculation of Z Factors For Natural Gases Using Equations of State
,”
J. Can. Pet. Technol.
,
14
(
3
), pp.
34
36
. 10.2118/75-03-03
21.
Fanchi
,
J. R.
,
1990
, “
Calculation of Parachors for Compositional Simulation: An Update
,”
SPE Reserv. Eng.
,
5
(
03
), pp.
433
436
. 10.2118/19453-PA
22.
Hernandez-Perez
,
V.
,
Abdulkadir
,
M.
, and
Azzopardi
,
B. J.
,
2011
, “
Grid Generation Issues in the CFD Modelling of Two-Phase Flow in a Pipe
,”
J. Comput. Multiphase Flows
,
3
(
1
), pp.
13
26
. 10.1260/1757-482X.3.1.13
23.
Harvie
,
D. J. E.
,
Davidson
,
M. R.
, and
Rudman
,
M.
,
2006
, “
An Analysis of Parasitic Current Generation in Volume of Fluid Simulations
,”
Appl. Math. Model.
,
30
(
10
), pp.
1056
1066
. 10.1016/j.apm.2005.08.015
24.
Camacho
,
M.
,
2016
,
CFD Modeling of Annular Flow for Prediction of the Liquid Film Behavior
,
KTH Royal Institute of Technology
,
Stockholm
, pp.
30
40
.
25.
First Ten Angstroms
,
2003
, “
Contact Angle and Surface Energy Measurements on Steel
,”
[Online]
, http://www.firsttenangstroms.com/pdfdocs/ContactAngles OnSteel.pdf,
Accessed October 15, 2018
.
26.
Schmura
,
E.
, and
Klingenberg
,
M.
,
2005
,
Existing Natural Gas Pipeline Materials and Associated Operational Characteristics
,
Department of Energy Hydrogen and Fuel Cells Program
,
Johnstown
.
27.
Malgarinos
,
I.
,
Nikolopoulos
,
N.
,
Marengo
,
M.
,
Antonini
,
C.
, and
Gavaises
,
M.
,
2014
, “
VOF Simulations of the Contact Angle Dynamics During the Drop Spreading: Standard Models and a New Wetting Force Model
,”
Adv. Colloid Interface Sci.
,
212
, pp.
1
20
. 10.1016/j.cis.2014.07.004
28.
Ashish Saha
,
A.
, and
Mitra
,
S. K.
,
2009
, “
Effect of Dynamic Contact Angle in a Volume of Fluid (VOF) Model for a Microfluidic Capillary Flow
,”
J. Colloid Interface Sci.
,
339
(
2
), pp.
461
480
. 10.1016/j.jcis.2009.07.071
29.
Denner
,
F.
, and
van Wachem
,
B. G. M.
,
2014
, “
Compressive VOF Method With Skewness Correction to Capture Sharp Interfaces on Arbitrary Meshes
,”
J. Comput. Phys.
,
279
, pp.
127
144
. 10.1016/j.jcp.2014.09.002
30.
Guerrero
,
E.
,
Muñoz
,
F.
, and
Ratkovich
,
N.
,
2017
, “
Comparison Between Eulerian and VOF Models for Two-Phase Flow Assessment in Vertical Pipes
,”
Ciencia, Tecnol. y Futuro
,
7
(
1
), pp.
73
84
. 10.29047/01225383.66
31.
Rivas
,
E.
,
Santiago
,
J. L.
,
Lechón
,
Y.
,
Martín
,
F.
,
Ariño
,
A.
,
Pons
,
J. J.
, and
Santamaría
,
J. M.
,
2019
, “
CFD Modelling of Air Quality in Pamplona City (Spain): Assessment, Stations Spatial Representativeness and Health Impacts Valuation
,”
Sci. Total Environ.
,
649
(
1
), pp.
1362
1380
. 10.1016/j.scitotenv.2018.08.315
32.
Fatima
,
S. F.
, and
Chaudhry
,
H. N.
,
2017
, “
Steady-State CFD Modelling and Experimental Analysis of the Local Microclimate in Dubai (UAE)
,”
Sust. Build.
,
2
(
5
), pp.
1
12
. 10.1051/sbuild/2017001
33.
Ghajar
,
A. J.
, and
Bhagwat
,
S. M.
,
2017
, “Gas–Liquid Flow in Ducts,”
Multiphase Flow Handbook
, 2nd ed.,
E. E.
Michaelides
,
C. T.
Crowe
, and
J. D.
Schwarzkopf
, eds.,
Taylor & Francis Group
,
Boca Raton
, pp.
287
356
.
34.
Barnea
,
D.
,
Shoham
,
O.
,
Taitel
,
Y.
, and
Dukler
,
A. E.
,
1980
, “
Flow Pattern Transition for Gas-Liquid Flow in Horizontal and Inclined Pipes. Comparison of Experimental Data With Theory
,”
Int. J. Multiphase Flow
,
6
(
3
), pp.
217
225
. 10.1016/0301-9322(80)90012-9
35.
Shoham
,
O.
,
2005
,
Mechanistic Modeling of Gas Liquid Two Phase Flow in Pipes
,
Society of Petroleum Engineers
,
New York
, pp.
240
250
.
36.
Taitel
,
Y.
, and
Dukler
,
A. E.
,
1976
, “
A Model for Predicting Flow Regime Transitions in HorizontaI and Near Horizontal Gas-Liquid Flow
,”
AlChE J.
,
22
(
1
), pp.
47
55
. 10.1002/aic.690220105
37.
Ballesteros Martínez
,
M.
,
Ratkovich
,
N.
, and
Pereyra
,
E.
,
2018
, “
Analysis of Low Liquid Loading Two—Phase Flow Using CFD and Experimental Data
,”
3rd World Congress on Momentum, Heat and Mass Transfer
,
Budapest, Hungary
,
Apr. 12–14
.
You do not currently have access to this content.