Abstract

The offshore wind industry is undergoing a rapid development due to its advantage over the onshore wind farm. The vertical axis wind turbine (VAWT) is deemed to be potential in offshore wind energy utilization. A design of the offshore vertical axis wind turbine with a deflector is proposed and studied in this paper. Two-dimensional computational fluid dynamics (CFD) simulation is employed to investigate the aerodynamic performance of wind turbine. An effective method of obtaining the blade’s angle of attack (AoA) is introduced in CFD simulation to help analyze the blade aerodynamic torque variation. The numerical simulations are validated against the measured torque and wake velocity, and the results show a good agreement with the experiment. It is found that the blade instantaneous torque is correlated with the local AoA. Among the three deflector configurations, the front deflector leads to favorable local flow for the blade, which is responsible for the improved performance.

References

1.
BloombergNEF
,
2018
, “
Global Offshore Wind Market Set to Grow Sixfold by 2030
,” https://about.bnef.com/blog/global-offshore-wind-market-set-to-grow-sixfold-by-2030/,
last modified January 8, 2018
, accessed February 17, 2019.
2.
Liu
,
J.
,
Lin
,
H.
, and
Zhang
,
J.
,
2019
, “
Review on the Technical Perspectives and Commercial Viability of Vertical Axis Wind Turbines
,”
Ocean Eng.
,
182
, pp.
608
626
. 10.1016/j.oceaneng.2019.04.086
3.
Mollerstrom
,
E.
,
Gipe
,
P.
,
Beurskens
,
J.
, and
Ottermo
,
F.
,
2019
, “
A Historical Review of Vertical Axis Wind Turbines Rated 100 kW and Above
,”
Renew. Sust. Energ. Rev.
,
105
, pp.
1
13
. 10.1016/j.rser.2018.12.022
4.
Paquette
,
J.
, and
Barone
,
M.
,
2012
, “
Innovative Offshore Vertical-Axis Wind Turbine Rotor Project
,”
No. SAND2012-2777C
,
Sandia National Laboratories
.
5.
Paulsen
,
U. S.
,
Madsen
,
H. A.
,
Kragh
,
K. A.
,
Nielsen
,
P. H.
,
Baran
,
I.
,
Hattel
,
J.
,
Ritchie
,
E.
,
Leban
,
K.
,
Svendsen
,
H.
, and
Berthelsen
,
P. A.
,
2014
, “
DeepWind—From Idea to 5 MW Concept
,”
Energy Procedia
,
53
, pp.
23
33
. 10.1016/j.egypro.2014.07.212
6.
Parneix
,
N.
,
Fuchs
,
R.
,
Immas
,
A.
, and
Silvert
,
F.
,
2016
, “
Efficiency Improvement of Vertical-Axis Wind Turbines With Counter-Rotating Lay-Out
,”
Wind Europe Summit 2016
,
Hamburg, Germany
,
Sept. 27–29
.
7.
Thomas
,
R. N.
,
2004
, “
Coupled Vortex Vertical Axis Wind Turbine
,” US Patent No. 6784566.
8.
Dabiri
,
J. O.
,
2011
, “
Potential Order-of-Magnitude Enhancement of Wind Farm Power Density via Counter-Rotating Vertical-Axis Wind Turbine Arrays
,”
J. Renew. Sustain. Energ.
,
3
(
4
), p.
043104
. 10.1063/1.3608170
9.
Ahmadi-Baloutaki
,
M.
,
Carriveau
,
R.
, and
Ting
,
D. S. K.
,
2016
, “
A Wind Tunnel Study on the Aerodynamic Interaction of Vertical Axis Wind Turbines in Array Configurations
,”
Renew. Energ.
,
96
, pp.
904
913
. 10.1016/j.renene.2016.05.060
10.
Vergaerde
,
A.
,
De Troyer
,
T.
,
Kluczewska-Bordier
,
J.
,
Parneix
,
N.
,
Silvert
,
F.
, and
Runacres
,
M. C.
,
2018
, “
Wind Tunnel Experiments of a Pair of Interacting Vertical-Axis Wind Turbines
,”
J. Phys.: Conf. Ser.
,
1037
. 10.1088/1742-6596/1037/7/072049
11.
Bangga
,
G.
,
Lutz
,
T.
, and
Kramer
,
E.
,
2018
, “
Energy Assessment of Two Vertical Axis Wind Turbines in Side-by-Side Arrangement
,”
J. Renew. Sustain. Energ.
,
10
(
3
), p.
033303
. 10.1063/1.5028199
12.
Zanforlin
,
S.
, and
Nishino
,
T.
,
2016
, “
Fluid Dynamic Mechanisms of Enhanced Power Generation by Closely Spaced Vertical Axis Wind Turbines
,”
Renew. Energ.
,
99
, pp.
1213
1226
. 10.1016/j.renene.2016.08.015
13.
Kuma
,
H.
,
Takao
,
M.
,
Beppu
,
T.
,
Maeda
,
T.
,
Kamada
,
Y.
, and
Kamemoto
,
K.
,
2008
, “
A Straight-Bladed Vertical Axis Wind Turbine With a Directed Guide Vane:Mechanism of Performance Improvement
,”
Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering
,
Estoril, Portugal
,
June 15–20
, Vol.
6
, pp.
617
623
.
14.
Watanabe
,
K.
,
Takahashi
,
S.
, and
Ohya
,
Y.
,
2016
, “
Application of a Diffuser Structure to Vertical-Axis Wind Turbines
,”
Energies
,
9
(
6
), p.
406
. 10.3390/en9060406
15.
Kim
,
D.
, and
Gharib
,
M.
,
2013
, “
Efficiency Improvement of Straight-Bladed Vertical-Axis Wind Turbines With an Upstream Deflector
,”
J. Wind Eng. Ind. Aerodyn.
,
115
, pp.
48
52
. 10.1016/j.jweia.2013.01.009
16.
Battisti
,
L.
,
Persico
,
G.
,
Dossena
,
V.
,
Paradiso
,
B.
,
Castelli
,
M. R.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2018
, “
Experimental Benchmark Data for H-Shaped and Troposkien VAWT Architectures
,”
Renew. Energ.
,
125
, pp.
425
444
. 10.1016/j.renene.2018.02.098
17.
Balduzzi
,
F.
,
Drofelnik
,
J.
,
Bianchini
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
, and
Campobasso
,
M. S.
,
2017
, “
Darrieus Wind Turbine Blade Unsteady Aerodynamics: A Three-Dimensional Navier-Stokes CFD Assessment
,”
Energy
,
128
, pp.
550
563
. 10.1016/j.energy.2017.04.017
18.
Hand
,
B.
,
Kelly
,
G.
, and
Cashman
,
A.
,
2017
, “
Numerical Simulation of a Vertical Axis Wind Turbine Airfoil Experiencing Dynamic Stall at High Reynolds Numbers
,”
Comput. Fluids
,
149
, pp.
12
30
. 10.1016/j.compfluid.2017.02.021
19.
Hand
,
B.
, and
Cashman
,
A.
,
2018
, “
Aerodynamic Modeling Methods for a Large-Scale Vertical Axis Wind Turbine: A Comparative Study
,”
Renew. Energ.
,
129
, pp.
12
31
. 10.1016/j.renene.2018.05.078
20.
Kinsey
,
T.
, and
Dumas
,
G.
,
2012
, “
Three-Dimensional Effects on an Oscillating-Foil Hydrokinetic Turbine
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071105
. 10.1115/1.4006914
21.
Daroczy
,
L.
,
Janiga
,
G.
,
Petrasch
,
K.
,
Webner
,
M.
, and
Thevenin
,
D.
,
2015
, “
Comparative Analysis of Turbulence Models for the Aerodynamic Simulation of H-Darrieus Rotors
,”
Energy
,
90
, pp.
680
690
. 10.1016/j.energy.2015.07.102
22.
Paraschivoiu
,
I.
,
2013
,
Wind Turbine Design With Emphasis on Darrieus Concept
,
Presses Internationales Polytechnique
,
Québec
.
23.
Gosselin
,
R.
,
2015
, “
Analysis and Optimization of Vertical Axis Turbines
,”
Ph.D. dissertation
,
Laval University
.
24.
Elsakka
,
M. M.
,
Ingham
,
D. B.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2019
, “
CFD Analysis of the Angle of Attack for a Vertical Axis Wind Turbine Blade
,”
Energ. Convers. Manag.
,
182
, pp.
154
165
. 10.1016/j.enconman.2018.12.054
25.
Qin
,
N.
,
Howell
,
R.
,
Durrani
,
N.
,
Hamada
,
K.
, and
Smith
,
T.
,
2011
, “
Unsteady Flow Simulation and Dynamic Stall Behaviour of Vertical Axis Wind Turbine Blades
,”
Wind Eng.
,
35
(
4
), pp.
511
527
. 10.1260/0309-524X.35.4.511
26.
Lin
,
S. Y.
,
Lin
,
Y. Y.
,
Bai
,
C. J.
, and
Wang
,
W. C.
,
2016
, “
Performance Analysis of Vertical-Axis-Wind-Turbine Blade With Modified Trailing Edge Through Computational Fluid Dynamics
,”
Renew. Energ.
,
99
, pp.
654
662
. 10.1016/j.renene.2016.07.050
You do not currently have access to this content.