Abstract

Geothermal systems are identified as either open-loop system (OLGS) or closed-loop systems (CLGS). In OLGS, fluid is produced from the subsurface, while there might be a concurrent fluid injection into the reservoir. The loss of working fluid, surface subsidence, formation compaction, and induced seismicity are major challenges in OLGS. To address the indicated challenges, closed-loop geothermal systems can be considered as an alternative option. In this method, a working fluid with low-boiling point is circulated through the coaxial sealed pipes to harvest heat from the formation of rock and fluid. Induced seismicity is essentially caused by the drastic quick changes in pore pressure. Thereafter, seismic risk assessment is expected for any new geothermal technology before starting the field implementation phase. To improve the heat recovery from closed-loop wells, we suggest highly conductive hydraulic fractures for CLGS to improve the heat generation rate. In conventional hydraulic fracturing treatments, fractures facilitate fluid flow; however, in the proposed configuration, induced fractures enhance heat flux into the wellbore. Considering the multiphysics nature of CLGS, a comprehensive analysis of this problem requires simultaneous modeling of fluid flow, energy transfer (heat), and rock deformation. A thermoporoelastic model is developed in finite element methods to simulate this problem. The numerical results suggest that fractures significantly improve thermal power and cumulatively produced heat in CLGS. The thermal conductivity of the proppants is the key parameter enhancing heat generation. The level of surface subsidence in the proposed technique is negligible due to the lack of geofluid production from the reservoir. Significant numbers of abandoned oil or gas wells exist around the globe which can be converted into the geothermal wells to produce electricity. This study shows the feasibility of electricity production from CLGS with minimum environmental hazards.

References

1.
Armtead
,
H. C. H.
,
1983
,
Geothermal Energy
,
E. & F.N. Spon
,
London
, p.
404
.
2.
Ulgiati
,
S.
, and
Brown
,
M. T.
,
2002
, “
Quantifying the Environmental Support for Dilution and Abatement of Process Emissions: the Case of Electricity Production
,”
J. Cleaner Prod.
,
10
(
4
), pp.
335
348
. 10.1016/S0959-6526(01)00044-0
3.
Duffield
,
W. A.
, and
Sass
,
J. H.
,
2003
,
Geothermal Energy: Clean Power From the Earth's Heat
, Vol.
1249
,
Diane Publishing
,
Denver, CO
.
4.
Giardini
,
D.
,
2009
, “
Geothermal Quake Risks Must be Faced
,”
Nature
,
462
(
7275
), pp.
848
849
. 10.1038/462848a
5.
Williams
,
C. F.
,
Reed
,
M. J.
,
Mariner
,
R. H.
,
DeAngelo
,
J.
, and
Galanis
,
S. P.
,
2008
, “
Assessment of Moderate-and High-Temperature Geothermal Resources of the United States
” No.
2008-3082, Geological Survey (US)
.
6.
Tanaka
,
A.
,
Yamano
,
M.
,
Yano
,
Y.
, and
Sasada
,
M.
,
2004
, “
Geothermal Gradient and Heat Flow Data in and Around Japan (I): Appraisal of Heat Flow From Geothermal Gradient Data
,”
Earth, Planets Space
,
56
(
12
), pp.
1191
1194
. 10.1186/BF03353339
7.
Dickson
,
M. H.
, and
Fanelli
,
M.
,
2013
,
Geothermal Energy: Utilization and Technology
,
Routledge
.
8.
Muffler
,
P.
, and
Cataldi
,
R.
,
1978
, “
Methods for Regional Assessment of Geothermal Resources
,”
Geothermics
,
7
(
2
), pp.
53
89
. 10.1016/0375-6505(78)90002-0
9.
Hochstein
,
M. P.
,
1990
, “Classification and Assessment of Geothermal Resources,”
Small Geothermal Resources
,
M. H.
Dickson
and
M.
Fanelli
, eds.,
UNITAR/UNDP Handbook Series
,
Rome
, pp.
31
59
.
10.
Benderitter
,
Y.
, and
Cormy
,
G.
,
1990
, “Possible Approach to Geothermal Research and Relative Costs,”
Small Geothermal Resources: A Guide to Development and Utilization
,
M. H.
Dickson
and
M.
Fanelli
, eds.,
UNITAR
,
New York
, pp.
59
69
.
11.
Nicholson
,
K.
,
2012
,
Geothermal Fluids: Chemistry and Exploration Techniques
,
Springer Science & Business Media
,
New York, NY
.
12.
Lewis
,
R. W.
, and
Schrefler
,
B. A.
,
1998
,
The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media
,
John Wiley & Sons, Ltd.
13.
Rawal
,
C.
, and
Ghassemi
,
A.
,
2014
, “
A Reactive Thermo-Poroelastic Analysis of Water Injection Into an Enhanced Geothermal Reservoir
,”
Geothermics
,
50
, pp.
10
23
. 10.1016/j.geothermics.2013.05.007
14.
Wang
,
W.
, and
Dahi Taleghani
,
A.
,
2014
, “
Simulating Multi-Zone Fracturing in Vertical Wells
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042902
. 10.1115/1.4027691
15.
Geertsma
,
J.
,
1973
, “
Land Subsidence Above Compacting Oil and Gas Reservoirs
,”
J. Pet. Technol.
,
25
(
6
), pp.
734
744
. 10.2118/3730-PA
16.
Majer
,
E. L.
,
Baria
,
R.
,
Stark
,
M.
,
Oates
,
S.
,
Bommer
,
J.
,
Smith
,
B.
, and
Asanuma
,
H.
,
2007
, “
Induced Seismicity Associated With Enhanced Geothermal Systems
,”
Geothermics
,
36
(
3
), pp.
185
222
. 10.1016/j.geothermics.2007.03.003
17.
Dahi Taleghani
,
A.
, and
Klimenko
,
D.
,
2015
, “
An Analytical Solution for Microannulus Cracks Developed Around the Wellbore
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062901
.
18.
Diao
,
N.
,
Li
,
Q.
, and
Fang
,
Z.
,
2004
, “
Heat Transfer in Ground Heat Exchangers with Groundwater Advection
,”
Int. J. Therm. Sci.
,
43
(
12
), pp.
1203
1211
. 10.1016/j.ijthermalsci.2004.04.009
19.
Kagel
,
A.
,
Bates
,
D.
, and
Gawell
,
K.
,
2005
,
A Guide to Geothermal Energy and the Environment
,
Geothermal Energy Association
,
Washington, DC
.
20.
Xu
,
Y.
, and
Chung
,
D. D. L.
,
2000
, “
Cement of High Specific Heat and High Thermal Conductivity, Obtained by Using Silane and Silica Fume as Admixtures
,”
Cem. Concr. Res.
,
30
(
7
), pp.
1175
1178
. 10.1016/S0008-8846(00)00296-9
21.
Taleghani
,
A. D.
,
2013
, “
An Improved Closed-Loop Heat Extraction Method From Geothermal Resources
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042904
. 10.1115/1.4023175
22.
McTigue
,
D. F.
,
1986
, “
Thermoelastic Response of Fluid-Saturated Porous Rock
,”
J. Geophys. Res.
,
91
(
B9
), pp.
9533
9542
. 10.1029/JB091iB09p09533
23.
Kodashima
,
T.
, and
Kurashige
,
M.
,
1996
, “
Thermal Stresses in a Fluid-Saturated Poroelastic Hollow Sphere
,”
J. Therm. Stresses
,
19
(
2
), pp.
139
151
. 10.1080/01495739608946166
24.
Bai
,
M.
, and
Abousleiman
,
Y.
,
1997
, “
Thermoporoelastic Coupling With Application to Consolidation
,”
Int. J. Numer. Anal. Methods Geomech.
,
21
(
2
), pp.
121
132
. 10.1002/(SICI)1096-9853(199702)21:2<121::AID-NAG861>3.0.CO;2-W
25.
Belotserkovets
,
A.
, and
Prevost
,
J. H.
,
2011
, “
Thermoporoelastic Response of a Fluid-Saturated Porous Sphere: An Analytical Solution
,”
Int. J. Eng. Sci.
,
49
(
12
), pp.
1415
1423
. 10.1016/j.ijengsci.2011.05.017
26.
Bedayat
,
H.
, and
Dahi Taleghani
,
A.
,
2016
, “
Anisotropic Inhomogeneous Poroelastic Inclusions; With Application to Underground Energy Related Problems
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032905
. 10.1115/1.4032449
27.
Terzaghi
, C.
,
1925
, “
Principles of Soil Mechanics: IV—Settlement and Consolidation of Clay
,”
Eng. News-Rec.
,
95
, pp.
874
878
.
28.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
. 10.1063/1.1712886
29.
Rice
,
J. R.
, and
Cleary
,
M. P.
,
1976
, “
Some Basic Stress Diffusion Solutions for Fluid-Saturated Elastic Porous Media With Compressible Constituents
,”
Rev. Geophys.
,
14
(
2
), pp.
227
241
. 10.1029/RG014i002p00227
30.
Kanamori
,
H.
, and
Brodsky
,
E. E.
,
2001
, “
The Physics of Earthquakes
,”
Phys. Today
,
54
(
6
), pp.
34
40
. 10.1063/1.1387590
31.
Kanamori
,
H.
, and
Anderson
,
D. L.
,
1975
, “
Theoretical Basis of Some Empirical Relations in Seismology
,”
Bull. Seismol. Soc. Am.
,
65
(
5
), pp.
1073
1095
.
32.
Wang
,
H.
,
2000
,
Theory of Linear Poroelasticity With Applications to Geomechanics and Hydrogeology
,
Princeton University Press
,
Princeton, NJ
.
33.
Theis
,
C. V.
,
1935
, “
The Relation Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Ground-Water Storage
,”
Eos, Trans. Am. Geophys. Union
,
16
(
2
), pp.
519
524
. 10.1029/TR016i002p00519
34.
Elder
,
J. W.
,
1967
, “
Transient Convection in a Porous Medium
,”
J. Fluid Mech.
,
27
(
3
), pp.
609
623
. 10.1017/S0022112067000576
35.
Kehle
,
R. O.
,
1972
, “
Geothermal Survey of North America
,”
Annual Progress Report
.
36.
Gray
,
T. A.
,
2010
, “
Geothermal Resource Assessment of the Gueydan Salt Dome and the Adjacent Southeast Gueydan Field
,”
Master’s thesis
,
Louisiana State University
,
Baton Rouge, LA
.
37.
Verruijt
,
A.
,
2013
,
Theory and Problems of Poroelasticity
,
Delft University of Technology
,
Deft, The Netherlands
.
You do not currently have access to this content.