Abstract

A combined lift and drag (CLD) Savonius water turbine is an advanced form of Savonius water turbine that has higher efficiency than the latter. However, its detailed hydrodynamic performance optimization is still unexplored, which is important for its possible future commercialization. The objective of the present work is to perform a detailed hydrodynamic study for performance optimization of the CLD Savonius water turbine at low water speed (characteristic of river stream current) under different design and operating conditions. A parametric optimization using orthogonal experiments is first done to obtain the optimized values of all the contributing design parameters. It is then followed by a detailed computational fluid dynamics (CFD) investigation using ansys fluent software to optimize the hydrodynamic performance of the turbine at the selected design conditions under different operating tip speed ratios (TSRs). Detailed fluidic behaviors including boundary layer features, blade loading, and vorticity structures of the turbine are explored to obtain important performance insights, and power curves of the improved CLD design are also obtained. It is found that the optimized CLD Savonius water turbine has higher hydrodynamic performance than the earlier design of this turbine with a maximum coefficient of power obtained as 0.29 at TSR 0.8.

References

1.
Khan
,
M. J.
,
Bhuyan
,
G.
,
Iqbal
,
M. T.
, and
Quaicoe
,
J. E.
,
2009
, “
Hydrokinetic Energy Conversion Systems and Assessment of Horizontal and Vertical Axis Turbines for River and Tidal Applications: A Technology Status Review
,”
Appl. Energy
,
86
(
10
), pp.
1823
1835
. 10.1016/j.apenergy.2009.02.017
2.
Behrouzi
,
F.
,
Nakisa
,
M.
,
Maimun
,
A.
,
Ahmed
,
Y. M.
, and
Salem Souf-Aljen
,
A.
,
2019
, “
Performance Investigation of Self-Adjusting Blades Turbine Through Experimental Study
,”
Energy Convers. Manag.
,
181
, pp.
178
188
. 10.1016/j.enconman.2018.11.066
3.
Petinrin
,
J. O.
, and
Shaaban
,
M.
,
2015
, “
Renewable Energy for Continuous Energy Sustainability in Malaysia
,”
Renew. Sustain. Energy Rev.
,
50
, pp.
967
981
. 10.1016/j.rser.2015.04.146
4.
Van Els
,
R. H.
, and
Junior
,
A. C. P. B.
,
2015
, “
The Brazilian Experience With Hydrokinetic Turbines
,”
Energy Procedia
,
75
, pp.
259
264
. 10.1016/j.egypro.2015.07.328
5.
Yah
,
N. F.
,
Oumer
,
A. N.
, and
Idris
,
M. S.
,
2017
, “
Small Scale Hydro-Power as a Source of Renewable Energy in Malaysia: A Review
,”
Renew. Sustain. Energy Rev.
,
72
, pp.
228
239
. 10.1016/j.rser.2017.01.068
6.
Sørnes
,
K.
,
2014
, “
K4-1
,” No.
2013
, p.
2014
.
7.
Güney
,
M. S.
, and
Kaygusuz
,
K.
,
2010
, “
Hydrokinetic Energy Conversion Systems: A Technology Status Review
,”
Renew. Sustain. Energy Rev.
,
14
(
9
), pp.
2996
3004
. 10.1016/j.rser.2010.06.016
8.
Yuce
,
M. I.
, and
Muratoglu
,
A.
,
2015
, “
Hydrokinetic Energy Conversion Systems: A Technology Status Review
,”
Renew. Sustain. Energy Rev.
,
43
, pp.
72
82
.
9.
Laws
,
N. D.
, and
Epps
,
B. P.
,
2016
, “
Hydrokinetic Energy Conversion: Technology, Research, and Outlook
,”
Renew. Sustain. Energy Rev.
,
57
, pp.
1245
1259
. 10.1016/j.rser.2015.12.189
10.
Vermaak
,
H. J.
,
Kusakana
,
K.
, and
Koko
,
S. P.
,
2014
, “
Status of Micro-Hydrokinetic River Technology in Rural Applications: A Review of Literature
,”
Renew. Sustain. Energy Rev.
,
29
, pp.
625
633
. 10.1016/j.rser.2013.08.066
11.
Anyi
,
M.
, and
Kirke
,
B.
,
2010
, “
Evaluation of Small Axial Flow Hydrokinetic Turbines for Remote Communities
,”
Energy Sustain. Dev.
,
14
(
2
), pp.
110
116
. 10.1016/j.esd.2010.02.003
12.
Lago
,
L. I.
,
Ponta
,
F. L.
, and
Chen
,
L.
,
2010
, “
Advances and Trends in Hydrokinetic Turbine Systems
,”
Energy Sustain. Dev.
,
14
(
4
), pp.
287
296
. 10.1016/j.esd.2010.09.004
13.
Guney
,
M. S.
,
2011
, “
Evaluation and Measures to Increase Performance Coefficient of Hydrokinetic Turbines
,”
Renew. Sustain. Energy Rev.
,
15
(
8
), pp.
3669
3675
. 10.1016/j.rser.2011.07.009
14.
Sarma
,
N. K.
,
Biswas
,
A.
, and
Misra
,
R. D.
,
2014
, “
Experimental and Computational Evaluation of Savonius Hydrokinetic Turbine for Low Velocity Condition With Comparison to Savonius Wind Turbine at the Same Input Power
,”
Energy Convers. Manag.
,
83
, pp.
88
98
. 10.1016/j.enconman.2014.03.070
15.
Sarma
,
N. K.
,
Biswas
,
A.
, and
Misra
,
R. D.
,
2014
, “
Experimental and CFD Analyses of Two Bladed Savonius Water Experimental and CFD Analyses of Two Bladed Savonius Water Turbine Under Low Velocity Conditions
,”
ASME 2014 Power Conference
,
American Society of Mechanical Engineers
, pp.
V002T10A009
V002T10A009
.
16.
Talukdar
,
P. K.
,
Sardar
,
A.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2018
, “
Parametric Analysis of Model Savonius Hydrokinetic Turbines Through Experimental and Computational Investigations
,”
Energy Convers. Manag.
,
158
, pp.
36
49
. 10.1016/j.enconman.2017.12.011
17.
Mabrouki
,
I.
,
Driss
,
Z.
, and
Abid
,
M. S.
,
2014
, “
Experimental Investigation of the Height Effect of Water Savonius Rotors
,”
Int. J. Mech. Appl.
,
4
(
1
), pp.
8
12
.
18.
Mahmoud
,
N. H.
,
El-Haroun
,
A. A.
,
Wahba
,
E.
, and
Nasef
,
M. H.
,
2012
, “
An Experimental Study on Improvement of Savonius Rotor Performance
,”
Alexandria Eng. J.
,
51
(
1
), pp.
19
25
. 10.1016/j.aej.2012.07.003
19.
Gupta
,
R.
,
Biswas
,
A.
, and
Sharma
,
K. K.
,
2008
, “
Comparative Study of a Three-Bucket Savonius Rotor With a Combined Three-Bucket Savonius-Three-Bladed Darrieus Rotor
,”
Renew. Energy
,
33
(
9
), pp.
1974
1981
. 10.1016/j.renene.2007.12.008
20.
Bhuyan
,
S.
, and
Biswas
,
A.
,
2014
, “
Investigations on Self-Starting and Performance Characteristics of Simple H and Hybrid H-Savonius Vertical Axis Wind Rotors
,”
Energy Convers. Manag.
,
87
, pp.
859
867
. 10.1016/j.enconman.2014.07.056
21.
Roshan
,
A.
,
Sagharichi
,
A.
, and
Maghrebi
,
M. J.
,
2020
, “
Nondimensional Parameters’ Effects on Hybrid Darrieus–Savonius Wind Turbine Performance
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), pp.
1
12
. 10.1115/1.4044517
22.
Ghosh
,
A.
,
Biswas
,
A.
,
Sharma
,
K. K.
, and
Gupta
,
R.
,
2015
, “
Computational Analysis of Flow Physics of a Combined Three Bladed Darrieus Savonius Wind Rotor
,”
J. Energy Inst.
,
88
(
4
), pp.
425
437
. 10.1016/j.joei.2014.11.001
23.
Gupta
,
R.
, and
Biswas
,
A.
,
2011
, “
CFD Analysis of Flow Physics and Aerodynamic Performance of a Combined Three-Bucket Savonius and Three-Bladed Darrieus Turbine
,”
Int. J. Green Energy
,
8
(
2
), pp.
209
233
. 10.1080/15435075.2010.548541
24.
Debnath
,
B. K.
,
Biswas
,
A.
, and
Gupta
,
R.
,
2009
, “
Computational Fluid Dynamics Analysis of a Combined Three-Bucket Savonius and Three-Bladed Darrieus Rotor at Various Overlap Conditions
,”
J. Renew. Sustain. Energy
,
1
(
3
), p.
033110
. 10.1063/1.3152431
25.
Golecha
,
K.
,
Eldho
,
T. I.
, and
Prabhu
,
S. V.
,
2012
, “
Study on the Interaction Between Two Hydrokinetic Savonius Turbines
,”
Int. J. Rotat. Mach.
,
2012
, Article ID 581658, pp.
1
10
. 10.1155/2012/581658
26.
Sharma
,
K. K.
,
Gupta
,
R.
, and
Biswas
,
A.
,
2014
, “
Performance Measurement of a Two-Stage Two-Bladed Savonius Rotor
,”
Int. J. Renew. Energy Res.
,
4
(
1
), pp.
115
121
.
27.
Golecha
,
K.
,
Eldho
,
T. I.
, and
Prabhu
,
S. V.
,
2011
, “
Influence of the Deflector Plate on the Performance of Modified Savonius Water Turbine
,”
Appl. Energy
,
88
(
9
), pp.
3207
3217
. 10.1016/j.apenergy.2011.03.025
28.
Kailash
,
G.
,
Eldho
,
T. I.
, and
Prabhu
,
S. V.
,
2012
, “
Performance Study of Modified Savonius Water Turbine With Two Deflector Plates
,”
Int. J. Rot. Mach.
,
2012
, p.
13
.
29.
Technology
,
R. E.
,
2016
, “
Numerical Simulation of Two-Bladed Savonius Water Turbine With Deflector Mithinga Basumatary and Agnimitra Biswas *
,”
7
(
4
), pp.
383
402
.
30.
Thakur
,
N.
,
Biswas
,
A.
,
Kumar
,
Y.
, and
Basumatary
,
M.
,
2019
, “
CFD Analysis of Performance Improvement of the Savonius Water Turbine by Using an Impinging Jet Duct Design
,”
Chin. J. Chem. Eng.
,
27
(
4
), pp.
794
801
. 10.1016/j.cjche.2018.11.014
31.
Ponta
,
F.
, and
Shankar Dutt
,
G.
,
2000
, “
An Improved Vertical-Axis Water-Current Turbine Incorporating a Channelling Device
,”
Renew. Energy
,
20
(
2
), pp.
223
241
. 10.1016/S0960-1481(99)00065-8
32.
Sahim
,
K.
,
Ihtisan
,
K.
,
Santoso
,
D.
, and
Sipahutar
,
R.
,
2014
, “
Experimental Study of Darrieus–Savonius Water Turbine With Deflector: Effect of Deflector on the Performance
,”
Int. J. Rotat. Mach.
,
2014
, pp.
1
6
. 10.1155/2014/203108
33.
Kaprawi
,
S.
,
Santoso
,
D.
, and
Sipahutar
,
R.
,
2015
, “
Performance of Combined Water Turbine Darrieus–Savonius With Two Stage Savonius Buckets and Single Deflector
,”
Int. J. Renew. Energy Res.
,
5
(
1
), pp.
217
221
.
34.
Tartuferi
,
M.
,
D’Alessandro
,
V.
,
Montelpare
,
S.
, and
Ricci
,
R.
,
2015
, “
Enhancement of Savonius Wind Rotor Aerodynamic Performance: A Computational Study of New Blade Shapes and Curtain Systems
,”
Energy
,
79
, pp.
371
384
. 10.1016/j.energy.2014.11.023
35.
Roy
,
S.
, and
Saha
,
U. K.
,
2014
, “
An Adapted Blockage Factor Correlation Approach in Wind Tunnel Experiments of a Savonius-Style Wind Turbine
,”
Energy Convers. Manag.
,
86
, pp.
418
427
. 10.1016/j.enconman.2014.05.039
36.
Roy
,
S.
, and
Ducoin
,
A.
,
2016
, “
Unsteady Analysis on the Instantaneous Forces and Moment Arms Acting on a Novel Savonius-Style Wind Turbine
,”
Energy Convers. Manag.
,
121
, pp.
281
296
. 10.1016/j.enconman.2016.05.044
37.
Roy and Sukanta
,
2013
, “
Numerical Investigation to Assess an Optimal Blade Profile for the Drag Based Vertical Axis Wind Turbine
,”
ASME International Mechanical Engineering Congress and Exposition
,
San Diego, CA
,
Nov. 15–21
.
38.
Roy
,
S.
, and
Saha
,
U. K.
,
2015
, “
Wind Tunnel Experiments of a Newly Developed Two-Bladed Savonius-Style Wind Turbine
,”
Appl. Energy
,
137
, pp.
117
125
. 10.1016/j.apenergy.2014.10.022
39.
Tian
,
W.
,
Mao
,
Z.
,
Zhang
,
B.
, and
Li
,
Y.
,
2018
, “
Shape Optimization of a Savonius Wind Rotor With Different Convex and Concave Sides
,”
Renew. Energy
,
117
, pp.
287
299
. 10.1016/j.renene.2017.10.067
40.
Chan
,
C. M.
,
Bai
,
H. L.
, and
He
,
D. Q.
,
2018
, “
Blade Shape Optimization of the Savonius Wind Turbine Using a Genetic Algorithm
,”
Appl. Energy
,
213
, pp.
148
157
. 10.1016/j.apenergy.2018.01.029
41.
Montelpare
,
S.
,
D’Alessandro
,
V.
,
Zoppi
,
A.
, and
Ricci
,
R.
,
2018
, “
Experimental Study on a Modified Savonius Wind Rotor for Street Lighting Systems. Analysis of External Appendages and Elements
,”
Energy
,
144
, pp.
146
158
. 10.1016/j.energy.2017.12.017
42.
Al-Kayiem
,
H. H.
,
Bhayo
,
B. A.
, and
Assadi
,
M.
,
2016
, “
Comparative Critique on the Design Parameters and Their Effect on the Performance of S-Rotors
,”
Renew. Energy
,
99
, pp.
1306
1317
. 10.1016/j.renene.2016.07.015
43.
Kumar
,
A.
, and
Saini
,
R. P.
,
2017
, “
Performance Analysis of a Savonius Hydrokinetic Turbine Having Twisted Blades
,”
Renew. Energy
,
108
, pp.
502
522
. 10.1016/j.renene.2017.03.006
44.
Kumar
,
A.
, and
Saini
,
R. P.
,
2017
, “
Performance Analysis of a Single Stage Modified Savonius Hydrokinetic Turbine Having Twisted Blades
,”
Renew. Energy
,
113
, pp.
461
478
. 10.1016/j.renene.2017.06.020
45.
Kumar
,
D.
, and
Sarkar
,
S.
,
2017
, “
Modeling of Flow-Induced Stress on Helical Savonius Hydrokinetic Turbine With the Effect of Augmentation Technique at Different Operating Conditions
,”
Renew. Energy
,
111
, pp.
740
748
. 10.1016/j.renene.2017.05.006
46.
Reza Hassanzadeh
,
A.
,
Yaakob
,
O.
,
Ahmed
,
Y. M.
, and
Ismail
,
M. A.
,
2013
, “
Comparison of Conventional and Helical Savonius Marine Current Turbine Using Computational Fluid Dynamics
,”
World Appl. Sci. J.
,
28
(
8
), pp.
1113
1119
.
47.
Basumatary
,
M.
,
Biswas
,
A.
, and
Misra
,
R. D.
,
2018
, “
CFD Analysis of an Innovative Combined Lift and Drag (CLD) Based Modified Savonius Water Turbine
,”
Energy Convers. Manag.
,
174
(
July
), pp.
72
87
. 10.1016/j.enconman.2018.08.025
48.
Basumatary
,
M.
,
Biswas
,
A.
, and
Misra
,
R. D.
,
2018
, “
Performance Investigations on Modified Vertical Axis Water Turbine: Combination of Lift and Drag
,”
AIP Conference Proceedings
,
Swami Vivekananda Institute of Technology, Secunderabad, India
,
Dec. 22–23
.
49.
ed-Dîn Fertahi
,
Saïf
,
Bouhal
,
T.
,
Rajad
,
Omar
,
Kousksou
,
T.
,
Arid
,
A.
,
El Rhafiki
,
T.
,
Jamil
,
A.
, and
Benbassou
,
A.
,
2018
, “
CFD Performance Enhancement of a Low Cut-In Speed Current Vertical Tidal Turbine Through the Nested Hybridization of Savonius and Darrieus
,”
Energy Convers. Manag.
,
169
, pp.
266
278
. 10.1016/j.enconman.2018.05.027
50.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Influence of Blade Profiles on Savonius Rotor Performance: Numerical Simulation and Experimental Validation
,”
Energy Convers. Manag.
,
186
, pp.
267
277
. 10.1016/j.enconman.2019.02.058
51.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), pp.
1
14
.
52.
Zhang
,
Y.
,
Kang
,
C.
,
Zhao
,
H.
, and
Teng
,
S.
,
2019
, “
Effects of In-Line Configuration of Drag-Type Hydrokinetic Rotors on Inter-Rotor Flow Pattern and Rotor Performance
,”
Energy Convers. Manag.
,
196
, pp.
44
55
.
53.
Elbatran
,
A. H.
,
Ahmed
,
Y. M.
, and
Shehata
,
A. S.
,
2017
, “
Performance Study of Ducted Nozzle Savonius Water Turbine, Comparison With Conventional Savonius Turbine
,”
Energy
,
134
, pp.
566
584
. 10.1016/j.energy.2017.06.041
54.
Mosbahi
,
M.
,
Ayadi
,
A.
,
Chouaibi
,
Y.
,
Driss
,
Z.
, and
Tucciarelli
,
T.
,
2019
, “
Performance Study of a Helical Savonius Hydrokinetic Turbine With a New Deflector System Design
,”
Energy Convers. Manag.
,
194
, pp.
55
74
. 10.1016/j.enconman.2019.04.080
55.
Kerikous
,
E.
, and
Thévenin
,
D.
,
2019
, “
Optimal Shape of Thick Blades for a Hydraulic Savonius Turbine
,”
Renew. Energy
,
134
, pp.
629
638
. 10.1016/j.renene.2018.11.037
56.
Chen
,
W. H.
,
Chen
,
C. Y.
,
Huang
,
C. Y.
, and
Hwang
,
C. J.
,
2017
, “
Power Output Analysis and Optimization of Two Straight-Bladed Vertical-Axis Wind Turbines
,”
Appl. Energy
,
185
, pp.
223
232
. 10.1016/j.apenergy.2016.10.076
57.
Permanasari
,
A. A.
,
Sukarni
,
Puspitasari
,
P.
,
Utama
,
S. B.
, and
Yaqin
,
F. A.
,
2019
, “
Experimental Investigation and Optimization of Floating Blade Water Wheel Turbine Performance Using Taguchi Method and Analysis of Variance (ANOVA)
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
515
(
1
), p.
012086
.
58.
Liao
,
C. N.
, and
Kao
,
H. P.
,
2010
, “
Supplier Selection Model Using Taguchi Loss Function, Analytical Hierarchy Process and Multi-Choice Goal Programming
,”
Comput. Ind. Eng.
,
58
(
4
), pp.
571
577
. 10.1016/j.cie.2009.12.004
59.
Dean
,
E. B.
,
1991
, “
Taguchi Approach to Design Optimization for Quality and Cost: An Overview
,”
Presented at the 1991 Annual Conference of the International Society of Parametric Analysts
,
NASA Langley Research Center, Hampton, VA
,
Jan. 1, 1990
.
60.
Menter
,
F. R.
,
1993
, “
AIAA 93 2906 Zonal Two Equation k co Turbulence Models for Aerodynamic Flows
,”
24th Fluid Dynamics Conference for Aerodynamic Flows
,
Orlando, FL
,
July 6–9
.
61.
El-Askary
,
W. A.
,
Nasef
,
M. H.
,
AbdEL-hamid
,
A. A.
, and
Gad
,
H. E.
,
2015
, “
Harvesting Wind Energy for Improving Performance of Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
139
, pp.
8
15
. 10.1016/j.jweia.2015.01.003
You do not currently have access to this content.