Abstract

Underground coal gasification (UCG) is a highly efficient new type of coal mining technology with broad future prospects. In order to study the cavity extension formation in the early ignition stage of UCG, a block coal scale UCG simulation experiment was carried out. The results show that after the ignition, the temperature above ignition point rose fastest, and the coal combustion interface and high temperature area moved toward to the above of ignition point, while the temperature of the left and right sides of ignition point rose a little slowly. According to the results of dissected block coal, it is indicated that the extension scale in the vertical direction was significantly larger than other directions; the combustion cavity form was an irregular rectangle like a pear. The results of this experiment revealed the cavity extension process from ignition of UCG channels to the formation of cavity, which provided a foundation for the study of extension characteristics of UCG channel in the entire UCG process.

References

1.
Zhu
,
Y.
,
Somasundaram
,
S.
, and
Kemp
,
J. W.
,
2010
, “
Energy and Exergy Analysis of Gasifier-Based Coal-to-Fuel Systems
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021008
. 10.1115/1.4001572
2.
Perkins
,
G.
,
2018
, “
Underground Coal Gasification—Part I: Field Demonstrations and Process Performance
,”
Prog. Energy Combust. Sci.
,
67
, pp.
158
187
. 10.1016/j.pecs.2018.02.004
3.
Perkins
,
G.
,
2018
, “
Underground Coal Gasification—Part II: Fundamental Phenomena and Modeling
,”
Prog. Energy Combust. Sci.
,
67
, pp.
234
274
. 10.1016/j.pecs.2018.03.002
4.
Harloff
,
G. J.
,
1983
, “
Underground Coal Gasification Research
,”
ASME J. Energy Resour. Technol.
,
105
(
2
), pp.
165
169
. 10.1115/1.3230897
5.
Martin
,
J. W.
,
McClung
,
J. D.
,
Liberatore
,
A. J.
,
Strickland
,
L. D.
,
Zielinski
,
R. E.
,
Seabaugh
,
P. W.
, and
Agarwal
,
A. K.
,
1981
, “
Field Results From a Linked Vertical Well UCG Test in Deep, Thin-Seam Bituminous Coal
,”
ASME J. Energy Resour. Technol.
,
103
(
4
), pp.
277
284
. 10.1115/1.3230852
6.
Xin
,
L.
,
Cheng
,
W.
,
Xie
,
J.
,
Liu
,
W.
, and
Xu
,
M.
,
2019
, “
Theoretical Research on Heat Transfer Law During Underground Coal Gasification Channel Extension Process
,”
Int. J. Heat Mass Transfer
,
142
, p.
118409
. 10.1016/j.ijheatmasstransfer.2019.07.059
7.
Xin
,
L.
,
Wang
,
Z.-T.
,
Wang
,
G.
,
Nie
,
W.
,
Zhou
,
G.
,
Cheng
,
W.-M.
, and
Xie
,
J.
,
2017
, “
Technological Aspects for Underground Coal Gasification in Steeply Inclined Thin Coal Seams at Zhongliangshan Coal Mine in China
,”
Fuel
,
191
, pp.
486
494
. 10.1016/j.fuel.2016.11.102
8.
Shrivastava
,
A.
, and
Prabu
,
V.
,
2016
, “
Thermodynamic Analysis of Solar Energy Integrated Underground Coal Gasification in the Context of Cleaner Fossil Power Generation
,”
Energy Convers. Manage.
,
110
, pp.
67
77
. 10.1016/j.enconman.2015.12.009
9.
Wiatowski
,
M.
,
Kapusta
,
K.
,
Świądrowski
,
J.
,
Cybulski
,
K.
,
Ludwik-Pardała
,
M.
,
Grabowski
,
J.
, and
Stańczyk
,
K.
,
2015
, “
Technological Aspects of Underground Coal Gasification in the Experimental “Barbara” Mine
,”
Fuel
,
159
, pp.
454
462
. 10.1016/j.fuel.2015.07.001
10.
Burchart-Korol
,
D.
,
Krawczyk
,
P.
,
Czaplicka-Kolarz
,
K.
, and
Smoliński
,
A.
,
2016
, “
Eco-Efficiency of Underground Coal Gasification (UCG) for Electricity Production
,”
Fuel
,
173
, pp.
239
246
. 10.1016/j.fuel.2016.01.019
11.
Tola
,
V.
,
Cau
,
G.
,
Ferrara
,
F.
, and
Pettinau
,
A.
,
2016
, “
CO2 Emissions Reduction From Coal-Fired Power Generation: A Techno-Economic Comparison
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
061602
. 10.1115/1.4034547
12.
Hoeftberger
,
D.
, and
Karl
,
J.
,
2016
, “
The Indirectly Heated Carbonate Looping Process for CO2 Capture–A Concept With Heat Pipe Heat Exchanger
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042211
. 10.1115/1.4033302
13.
Vellini
,
M.
, and
Tonziello
,
J.
,
2010
, “
Hydrogen Use in an Urban District: Energy and Environmental Comparisons
,”
ASME J. Energy Resour. Technol.
,
132
(
4
), p.
042601
. 10.1115/1.4003032
14.
Verma
,
A.
, and
Kumar
,
A.
,
2015
, “
Life Cycle Assessment of Hydrogen Production From Underground Coal Gasification
,”
Appl. Energy
,
147
, pp.
556
568
. 10.1016/j.apenergy.2015.03.009
15.
Wiatowski
,
M.
,
Stańczyk
,
K.
,
Świądrowski
,
J.
,
Kapusta
,
K.
,
Cybulski
,
K.
,
Krause
,
E.
,
Grabowski
,
J.
,
Rogut
,
J.
,
Howaniec
,
N.
, and
Smoliński
,
A.
,
2012
, “
Semi-Technical Underground Coal Gasification (UCG) Using the Shaft Method in Experimental Mine “Barbara”
,”
Fuel
,
99
, pp.
170
179
. 10.1016/j.fuel.2012.04.017
16.
Perkins
,
G.
,
Du Toit
,
E.
,
Koning
,
B.
, and
Ulbrich
,
A.
,
2013
, “
Unconventional Oil Production From Underground Coal Gasification and Gas to Liquids Technologies
,”
Asia Pacific Unconventional Resources Conference and Exhibition 2013: Delivering Abundant Energy for a Sustainable Future
,
Brisbane
,
Nov. 11–13
,
Society of Petroleum Engineers
, pp.
281
296
.
17.
Daggupati
,
S.
,
Mandapati
,
R. N.
,
Mahajani
,
S. M.
,
Ganesh
,
A.
,
Pal
,
A. K.
,
Sharma
,
R. K.
, and
Aghalayam
,
P.
,
2011
, “
Compartment Modeling for Flow Characterization of Underground Coal Gasification Cavity
,”
Ind. Eng. Chem. Res.
,
50
(
1
), pp.
277
290
. 10.1021/ie101307k
18.
Khadse
,
A. N.
,
Qayyumi
,
M.
,
Mahajani
,
S. M.
, and
Aghalayam
,
P.
,
2006
, “
Reactor Model for the Underground Coal Gasification (UCG) Channel
,”
Int. J. Chem. Reactor Eng.
,
4
(
Compendex
), pp.
1
27
. 10.2202/1542-6580.1351
19.
Blinderman
,
M. S.
,
Saulov
,
D. N.
, and
Klimenko
,
A. Y.
,
2008
, “
Forward and Reverse Combustion Linking in Underground Coal Gasification
,”
Energy
,
33
(
3
), pp.
446
454
. 10.1016/j.energy.2007.10.004
20.
Chen
,
L.
,
Hou
,
C. H.
,
Chen
,
J. S.
, and
Xu
,
J. T.
,
2011
, “
A Back Analysis of the Temperature Field in the Combustion Volume Space During Underground Coal Gasification
,”
Min. Sci. Technol. China
,
21
(
4
), pp.
581
585
. 10.1016/j.mstc.2011.06.018
21.
Sarraf
,
A.
,
Mmbaga
,
J. P.
,
Gupta
, and
Hayes
,
R. E.
,
2011
, “
Modeling Cavity Growth During Underground Coal Gasification
,”
Proceedings of the 2011 COMOL Conference
,
Boston, MA
, pp.
1
5
.
22.
Liu
,
X.
,
Guo
,
G.
, and
Li
,
H.
,
2019
, “
Study on the Propagation Law of Temperature Field in Surrounding Rock of Underground Coal Gasification (UCG) Combustion Cavity Based on Dynamic Thermal Parameters
,”
Results Phys.
,
12
, pp.
1956
1963
. 10.1016/j.rinp.2019.02.006
23.
Javed
,
S. B.
,
Uppal
,
A. A.
,
Bhatti
,
A. I.
, and
Samar
,
R.
,
2019
, “
Prediction and Parametric Analysis of Cavity Growth for the Underground Coal Gasification Project Thar
,”
Energy.
,
172
, pp.
1277
1290
. 10.1016/j.energy.2019.02.005
24.
Liu
,
J.
,
2014
, “
Research on the Expansion of Coal Underground Gasification and Combustion Zone Stability
,”
Master
,
China University of Mining and Technology
,
Xuzhou
.
25.
Strugała-Wilczek
,
A.
, and
Stańczyk
,
K.
,
2016
, “
Leaching Behaviour of Metals From Post-Underground Coal Gasification Cavity Residues in Water Differing in Mineralization
,”
Fuel
,
173
, pp.
106
114
. 10.1016/j.fuel.2016.01.046
26.
Samdani
,
G.
,
Aghalayam
,
P.
,
Ganesh
,
A.
,
Sapru
,
R. K.
,
Lohar
,
B. L.
, and
Mahajani
,
S.
,
2016
, “
A Process Model for Underground Coal Gasification—Part-I: Cavity Growth
,”
Fuel
,
181
, pp.
690
703
. 10.1016/j.fuel.2016.05.020
27.
Suponik
,
T.
, and
Lutynski
,
M.
,
2013
, “
In-Situ Treatment of Groundwater Contaminated With Underground Coal Gasification Products
,”
Arch. Min. Sci.
,
58
(
4
), pp.
1263
1278
. 10.2478/amsc-2013-0087
28.
Liu
,
S.-Q.
,
Li
,
J.-G.
,
Mei
,
M.
, and
Dong
,
D.-L.
,
2007
, “
Groundwater Pollution From Underground Coal Gasification
,”
J. China Univ. Min. Technol.
,
17
(
4
), pp.
467
472
. 10.1016/S1006-1266(07)60127-8
29.
Liu
,
S.
,
Niu
,
M.
,
Yan
,
Y.
,
Jin
,
X.
,
He
,
Y.
,
Gao
,
B.
,
Wang
,
Z.
, and
Li
,
J.
,
2018
, “
Research on Radial Expansion Detection of Coal Underground Gasification Gasification Face
,”
J. China Coal Soc.
,
43
(
7
), pp.
2044
2051
(in Chinese)
.
30.
Abdel-Hadi
,
E. A. A.
, and
Hsu
,
T. R.
,
1987
, “
Computer Modeling of Fixed Bed Underground Coal Gasification Using the Permeation Method
,”
ASME J. Energy Resour. Technol.
,
109
(
1
), pp.
11
20
. 10.1115/1.3231316
31.
Jowkar
,
A.
,
Sereshki
,
F.
, and
Najafi
,
M.
,
2018
, “
A New Model for Evaluation of Cavity Shape and Volume During Underground Coal Gasification Process
,”
Energy
,
148
, pp.
756
765
. 10.1016/j.energy.2018.01.188
32.
Prabu
,
V.
, and
Jayanti
,
S.
,
2011
, “
Simulation of Cavity Formation in Underground Coal Gasification Using Bore Hole Combustion Experiments
,”
Energy
,
36
(
10
), pp.
5854
5864
. 10.1016/j.energy.2011.08.037
33.
Najafi
,
M.
,
Jalali
,
S. M. E.
,
KhaloKakaie
,
R.
, and
Forouhandeh
,
F.
,
2015
, “
Prediction of Cavity Growth Rate During Underground Coal Gasification Using Multiple Regression Analysis
,”
Int. J. Coal Sci. Technol.
,
2
(
4
), pp.
318
324
. 10.1007/s40789-015-0095-9
34.
Daggupati
,
S.
,
Mandapati
,
R. N.
,
Mahajani
,
S. M.
,
Ganesh
,
A.
,
Mathur
,
D. K.
,
Sharma
,
R. K.
, and
Aghalayam
,
P.
,
2010
, “
Laboratory Studies on Combustion Cavity Growth in Lignite Coal Blocks in the Context of Underground Coal Gasification
,”
Energy
,
35
(
6
), pp.
2374
2386
. 10.1016/j.energy.2010.02.015
35.
Li
,
Q.
,
Yao
,
Y.
,
Sun
,
W.
, and
Li
,
Z.
,
2008
, “
Effect of High Temperature on Cement Mortar Strength and Mechanism Analysis
,”
J. Build. Mater.
,
11
(
6
), pp.
699
703
(in Chinese).
36.
Feng
,
J.
,
2009
, “
Experimental Study on Degradation and Damage Process of Cement-Based Materials at High Temperature and Microscopic View
,”
Doctor
,
China University of Mining and Technology
,
Beijing
.
37.
Chen
,
Q.
,
Guo
,
Q.
, and
Yu
,
L.
,
2007
, “
Model and Experimental Study on Coal Seam Expansion in Underground Coal Gasification and Combustion Area
,”
J. Shandong Jianzhu Univ.
,
22
(
6
), pp.
490
495
.
You do not currently have access to this content.