Abstract

The use of natural gas (NG) in heavy-duty internal combustion engines can reduce the dependence on petroleum fuels and greenhouse gas emissions. Diesel engines can convert to NG spark ignition (SI) by installing a high-energy ignition system and a gas injector. The diesel combustion chamber affects the flow inside the cylinder, so some existing SI combustion models will not accurately describe the operation of converted diesels. For example, the single Wiebe function has difficulties in correctly describing the mass fraction burn (MFB) throughout the combustion process. This study used experiments from a 2L single-cylinder research engine converted to port fuel injection NG SI and operated with methane at 1300 rpm and equivalence ratio 0.8 (6.2 bars IMEP) to compare the standard Wiebe function with a triple Wiebe function. Results indicated that lean-burn engine operation at an advanced spark timing produced three peaks in the heat release rate, suggesting a multi-stage combustion process. A “best goodness-of-fit” approach determined the values of the key parameters in the zero-dimensional Wiebe function model. The triple Wiebe function described the mass fraction burn and combustion phasing more accurately compared with the single Wiebe function. Moreover, it provided the duration and phasing of each individual burning stage that can then characterize the combustion in such converted diesel engines. This suggests that a multiple Wiebe function combustion model would effectively assist in analyzing such a multi-stage combustion process, which is important for engine optimization and development.

References

1.
Li
,
H.
, and
Karim
,
G. A.
,
2008
, “
Modeling the Performance of a Turbo-Charged Spark Ignition Natural Gas Engine With Cooled Exhaust Gas Recirculation
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
032804
. 10.1115/1.2835058
2.
Dumitrescu
,
C. E.
,
Padmanaban
,
V.
, and
Liu
,
J.
,
2018
, “
An Experimental Investigation of Early Flame Development in an Optical SI Engine Fueled With Natural Gas
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082802
. 10.1115/1.4039616
3.
Beck
,
N. J.
,
Barkhimer
,
R. L.
,
Johnson
,
W. P.
,
Wong
,
H. C.
, and
Gebert
,
K.
,
1997
,
Evolution of Heavy Duty Natural Gas Engines-Stoichiometric, Carbureted and Spark Ignited to Lean Burn, Fuel Injected and Micro-Pilot
,
SAE Technical Paper 972665
.
4.
Jones
,
M. K.
, and
Heaton
,
D. M.
,
1989
,
Nebula Combustion System for Lean Burn Spark Ignited Gas Engines
,
SAE Technical Paper 890211
.
5.
Weaver
,
C. S.
,
1989
,
Natural Gas Vehicles—A Review of the State of the Art
,
SAE Technical Paper 892133
.
6.
Gupta
,
M.
,
Bell
,
S.
, and
Tillman
,
S.
,
1996
, “
An Investigation of Lean Combustion in a Natural Gas-Fueled Spark-Ignited Engine
,”
ASME J. Energy Resour. Technol.
,
118
(
2
), pp.
145
151
. 10.1115/1.2792706
7.
Liu
,
J.
,
Bommisetty
,
H.
, and
Dumitrescu
,
C. E.
,
2019
, “
Experimental Investigation of a Heavy-Duty CI Engine Retrofitted to Natural Gas SI Operation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112207
. 10.1115/1.4043749
8.
Donateo
,
T.
,
Tornese
,
F.
, and
Laforgia
,
D.
,
2013
, “
Computer-Aided Conversion of an Engine From Diesel to Methane
,”
Appl. Energy
,
108
, pp.
8
23
. 10.1016/j.apenergy.2013.03.002
9.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
,
Experimental Investigation of Natural Gas Lean-Burn Spark Ignition Combustion Inside a Bowl-In-Piston Geometry
,
SAE Technical Paper 2019-01-0559
.
10.
Reyes
,
M.
,
Tinaut
,
F. V.
,
Giménez
,
B.
, and
Pérez
,
A.
,
2015
, “
Characterization of Cycle-to-Cycle Variations in a Natural Gas Spark Ignition Engine
,”
Fuel
,
140
, pp.
752
761
. 10.1016/j.fuel.2014.09.121
11.
Stocchi
,
I.
,
Liu
,
J.
,
Dumitrescu
,
C. E.
,
Battistoni
,
M.
, and
Grimaldi
,
C. N.
,
2019
, “
Effect of Piston Crevices on the Numerical Simulation of a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition Operation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112204
. 10.1115/imece2018-87783
12.
Johansson
,
B.
, and
Olsson
,
K.
,
1995
,
Combustion Chambers for Natural Gas SI Engines Part I: Fluid Flow and Combustion
,
SAE Technical Paper 950469
.
13.
Olsson
,
K.
, and
Johansson
,
B.
,
1995
,
Combustion Chambers for Natural Gas SI Engines Part 2: Combustion and Emissions
,
SAE Technical Paper 950517
.
14.
Liu
,
J.
,
2018
, “
Investigation of Combustion Characteristics of a Heavy-Duty Diesel Engine Retrofitted to Natural Gas Spark Ignition Operation
,”
Ph.D. dissertation
,
West Virginia University
,
Morgantown, WV
.
15.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Numerical Simulation of Re-Entrant Bowl Effects on Natural Gas SI Operation
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p.
061023
. 10.1115/1.4043030
16.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Combustion Partitioning Inside a Natural Gas Spark Ignition Engine With a Bowl-In-Piston Geometry
,”
Energy Convers. Manage.
,
183
, pp.
73
83
. 10.1016/j.enconman.2018.12.118
17.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Methodology to Separate the Two Burn Stages of Natural-Gas Lean Premixed-Combustion Inside a Diesel Geometry
,”
Energy Convers. Manage.
,
195
, pp.
21
31
. 10.1016/j.enconman.2019.04.091
18.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Single and Double Wiebe Function Combustion Model for a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition
,”
Appl. Energy
,
248
, pp.
95
103
. 10.1016/j.apenergy.2019.04.098
19.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
20.
Yeliana
,
C.
,
Cooney
,
J.
,
Worm
,
D.
,
Michalek
,
J.
, and
Naber
,
2008
, “
Wiebe Function Parameter Determination for Mass Fraction Burn Calculation in an Ethanol-Gasoline Fuelled SI Engine
,”
J. KONES
,
15
(
3
), pp.
567
574
.
21.
Yeliana
,
Y.
,
Cooney
,
C.
,
Worm
,
J.
,
Michalek
,
D. J.
, and
Naber
,
J. D.
,
2011
, “
Estimation of Double-Wiebe Function Parameters Using Least Square Method for Burn Durations of Ethanol-Gasoline Blends in Spark Ignition Engine Over Variable Compression Ratios and EGR Levels
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2213
2220
. 10.1016/j.applthermaleng.2011.01.040
22.
Yasar
,
H.
,
Soyhan
,
H. S.
,
Walmsley
,
H.
,
Head
,
B.
, and
Sorusbay
,
C.
,
2008
, “
Double-Wiebe Function: An Approach for Single-Zone HCCI Engine Modeling
,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1284
1290
. 10.1016/j.applthermaleng.2007.10.014
23.
Canova
,
M.
,
Garcin
,
R.
,
Midlam-Mohler
,
S.
,
Guezennec
,
Y.
, and
Rizzoni
,
G.
,
2005
, “
A Control-Oriented Model of Combustion Process in a HCCI Diesel Engine
,”
Proceedings of the 2005, American Control Conference, 2005: IEEE
,
Portland, OR
,
June 8–10
, pp.
4446
4451
.
24.
Glewen
,
W. J.
,
Wagner
,
R. M.
,
Edwards
,
K. D.
, and
Daw
,
C. S.
,
2009
, “
Analysis of Cyclic Variability in Spark-Assisted HCCI Combustion Using a Double Wiebe Function
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2885
2892
. 10.1016/j.proci.2008.06.029
25.
Tolou
,
S.
,
Vedula
,
R. T.
,
Schock
,
H.
,
Zhu
,
G.
,
Sun
,
Y.
, and
Kotrba
,
A.
,
2018
, “
Combustion Model for a Homogeneous Turbocharged Gasoline Direct-Injection Engine
,”
ASME J. Eng. Gas Turbines Power
,
140
(
10
), p.
102804
. 10.1115/1.4039813
26.
Awad
,
S.
,
Varuvel
,
E. G.
,
Loubar
,
K.
, and
Tazerout
,
M.
,
2013
, “
Single Zone Combustion Modeling of Biodiesel From Wastes in Diesel Engine
,”
Fuel
,
106
, pp.
558
568
. 10.1016/j.fuel.2012.11.051
27.
Xu
,
S.
,
Anderson
,
D.
,
Singh
,
A.
,
Hoffman
,
M.
,
Prucka
,
R.
, and
Filipi
,
Z.
,
2014
, “
Development of a Phenomenological Dual-Fuel Natural Gas Diesel Engine Simulation and its Use for Analysis of Transient Operations
,”
SAE Int. J. Engines
,
7
(
4
), pp.
1665
1673
. 10.4271/2014-01-2546
28.
Xu
,
S.
,
Anderson
,
D.
,
Hoffman
,
M.
,
Prucka
,
R.
, and
Filipi
,
Z.
,
2016
, “
A Phenomenological Combustion Analysis of a Dual-Fuel Natural-Gas Diesel Engine
,”
Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
,
231
(
1
), pp.
66
83
. 10.1177/0954407016633337
29.
Caligiuri
,
C.
, and
Renzi
,
M.
,
2017
, “
Combustion Modelling of a Dual Fuel Diesel—Producer Gas Compression Ignition Engine
,”
Energy Procedia
,
142
, pp.
1395
1400
. 10.1016/j.egypro.2017.12.525
30.
Larmi
,
M.
,
Isaksson
,
S.
,
Tikkanen
,
S.
, and
Lammila
,
M.
,
2001
,
Performance Simulation of a Compression Ignition Free Piston Engine
,
SAE Technical Paper 2001-01-0280
.
31.
Eghbali
,
B.
,
1984
,
Natural Gas as a Vehicular Fuel
,
SAE Technical Paper 841159
.
32.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Analysis of Two-Stage Natural-Gas Lean Combustion Inside a Diesel Geometry
,”
Appl. Therm. Eng.
,
160
. 10.1016/j.applthermaleng.2019.114116
33.
Narayanan
,
G.
, and
Shrestha
,
S. B.
,
2009
, “
A Simulation Model of a Four-Stroke Spark Ignition Engine Fueled With Landfill Gases and Hydrogen Mixtures
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
032203
. 10.1115/1.3185344
34.
Duarte
,
J.
,
Garcia
,
J.
,
Jimenez
,
J.
,
Sanjuan
,
M. E.
,
Bula
,
A.
, and
Gonzalez
,
J.
,
2017
, “
Auto-Ignition Control in Spark-Ignition Engines Using Internal Model Control Structure
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022201
. 10.1115/1.4034026
You do not currently have access to this content.