Abstract

This paper evaluates the energy source temperature for novel salts based ammonia/sodium thiocyanate (NH3 + NaSCN) and ammonia/lithium nitrate (NH3 + LiNO3) absorption refrigeration systems. Minimum energy source temperature (cutoff) required to initiate the cooling, critical energy source temperature for optimized thermodynamic performance and possible maximum energy source temperature to avoid crystallization have been determined, and empirical correlations are developed to facilitate continuous operation of the system. A comparison of cutoff energy source temperature depicts that the NH3 + NaSCN pair requires averagely 6 –7 °C higher cutoff temperature compared with the NH3 + LiNO3 pair. Contradictory to this, the maximum coefficient of performance (COP) of the NH3 + NaSCN pair is 7.02% higher than that the NH3 + LiNO3 pair. However, NH3 + NaSCN pair operates in a very narrow range of energy source temperature. From the P − T − X diagram, the crystallization phenomenon is clarified and the maximum energy source temperature has been determined beyond which the system would not function due to crystallization problems. For −10 °C evaporator temperature, the energy source temperature should be controlled between 87 °C and 115 °C for the NH3 + NaSCN pair and between 80 °C and 147 °C for the NH3 + LiNO3 pair.

References

1.
Pandya
,
B.
,
Modi
,
N.
,
Kumar
,
V.
,
Upadhyai
,
R.
, and
Patel
,
J.
,
2018
, “
Performance Comparison and Optimal Parameters Evaluation of Solar-Assisted NH3–NaSCN and NH3–LiNO3 Type Absorption Cooling System
,”
J. Therm. Anal. Calorim.
,
135
(
6
), pp.
3437
3452
. 10.1007/s10973-018-7561-8
2.
Azhar
,
M.
, and
Siddiqui
,
M. A.
,
2019
, “
First and Second Law Analyses of Double Effect Parallel and Series Flow Direct Fired Absorption Cycles for Optimum Operating Parameters
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
124501
. 10.1115/1.4043880
3.
Pandya
,
B.
,
Kumar
,
V.
,
Patel
,
J.
, and
Matawala
,
V. K.
,
2018
, “
Optimum Heat Source Temperature and Performance Comparison of LiCl–H2O and LiBr–H2O Type Solar Cooling System
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051204
. 10.1115/1.4038918
4.
Modi
,
N.
,
Pandya
,
B.
, and
Patel
,
J.
,
2019
, “
Comparative Analysis of a Solar-Driven Novel Salt-Based Absorption Chiller With the Implementation of Nanoparticles
,”
Int. J. Energy Res.
,
43
(
4
), pp.
1
15
. 10.1002/er.4405
5.
Modi
,
N.
,
Pandya
,
B.
,
Hosseinpour
,
J.
, and
Amidpour
,
M.
,
2019
, “
Thermodynamic and Economic Contrast of an Ionic Solution Operated Solar Absorption Cooling System With Li Br + H2O Pair for a Business Building in India
,”
Int. J. Air-Cond. Refrig.
,
27
(
4
), pp.
1
15
. 10.1142/s2010132519500354
6.
Sun
,
D.-W.
,
1998
, “
Comparison of the Performances of NH3–H2O, NH3–LiNO3 and NH3–NaSCN Absorption Refrigeration Systems
,”
Energy Convers. Manage.
,
39
(
5–6
), pp.
357
368
. 10.1016/S0196-8904(97)00027-7
7.
National Fire Protection Association
,
2017
,
NFPA 704, Stand. Syst. Identif. Hazards Mater. Emerg. Response
.
8.
Kaushik
,
S. C.
, and
Kumar
,
R.
,
1985
, “
Thermodynamic Study of a Two-Stage Vapour Absorption Refrigeration System Using NH3 Refrigerant With Liquid/Solid Absorbents
,”
Energy Convers. Manage.
,
25
(
4
), pp.
427
431
. 10.1016/0196-8904(85)90007-X
9.
Acuña
,
A.
,
Velázquez
,
N.
, and
Cerezo
,
J.
,
2013
, “
Energy Analysis of a Diffusion Absorption Cooling System Using Lithium Nitrate, Sodium Thiocyanate and Water as Absorbent Substances and Ammonia as the Refrigerant
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
1273
1281
. 10.1016/j.applthermaleng.2012.10.046
10.
García
,
J. C. J.
,
2018
, “
Parametric Analysis on the Performance of an Experimental Ammonia/Lithium Nitrate Absorption Cooling System
,”
Int. J. Energy Res.
,
42
(
14
), pp.
4402
4416
. 10.1002/er.4185
11.
Cai
,
D.
,
He
,
G.
,
Tian
,
Q.
, and
Tang
,
W.
,
2014
, “
Exergy Analysis of a Novel Air-Cooled Non-Adiabatic Absorption Refrigeration Cycle With NH3–NaSCN and NH3–LiNO3 Refrigerant Solutions
,”
Energy Convers. Manage.
,
88
, pp.
66
78
. 10.1016/j.enconman.2014.08.025
12.
Wu
,
W.
,
Wang
,
B.
,
Shi
,
W.
, and
Li
,
X.
,
2013
, “
Crystallization Analysis and Control of Ammonia-Based Air Source Absorption Heat Pump in Cold Regions
,”
Adv. Mech. Eng.
,
5
, pp.
1
10
. 10.1155/2013/140341
13.
Klein
,
F.
, and
Alvarda
,
S. A.
,
2007
, “
Engineering Equation Solver (EES)
,”
F-Chart Software
,
WI
.
14.
Infante Ferreira
,
C. A.
,
1984
, “
Thermodynamic and Physical Property Data Equations for Ammonia–Lithium Nitrate and Ammonia–Sodium Thiocyanate Solutions
,”
Sol. Energy
,
32
(
2
), pp.
231
236
. 10.1016/S0038-092X(84)80040-7
You do not currently have access to this content.