Abstract

Butanol is an oxygenated renewable fuel and therefore is a potential candidate to be blended with gasoline to reduce particulate emissions. In this experimental investigation, particle number-size (PN-size) distribution and morphology (physical characterization) of soot emitted by the butanol–gasoline blend in a gasoline direct injection (GDI) engine have been investigated. The effect of engine load and fuel injection pressure (FIP) on particulates was investigated for two test fuels: gasoline and Bu15 (85%, v/v, gasoline blended with 15%, v/v, butanol) in a 0.5 L single-cylinder GDI engine using an engine exhaust particulate sizer (EEPS) and a partial flow dilution tunnel for collecting particulate samples on a filter paper. The physical characterization of particulates included primary particle size (Dp) and particle agglomerate characterization parameters such as agglomerate length (L), agglomerate width (W), skeletal length (Lsk) and skeletal width (Wsk), which were determined using a transmission electron microscope (TEM) and corresponding image analyses. PN-size distribution was relatively lower for Bu15, which decreased with increasing FIP. Regardless of the GDI engine operating condition, classical sphere and chain-like agglomerates having nearly similar nano-scale morphology were detected. The primary particle diameter changed with varying engine operating conditions. A comparative analysis of soot originating from Bu15 and gasoline was presented, which may be useful for gasoline particulate filter (GPF) design and to understand the regeneration of GPFs in practical engine applications.

References

1.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2017
, “
Effect of the Fuel Injection Pressure on Particulate Emissions From a Gasohol (E15 and M15)-Fueled Gasoline Direct Injection Engine
,”
Energy Fuels
,
31
(
4
), pp.
4155
4164
. 10.1021/acs.energyfuels.6b02877
2.
Reddy
,
M. S.
,
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2016
, “
Effect of Straight Vegetable Oil Blends and Biodiesel Blends on Wear of Mechanical Fuel Injection Equipment of a Constant Speed Diesel Engine
,”
Renew. Energy
,
99
, pp.
1008
1018
. 10.1016/j.renene.2016.07.072
3.
Reddy
,
M. S.
,
Sharma
,
N.
,
Gupta
,
N.
, and
Agarwal
,
A. K.
,
2018
, “
Effect of Non-Edible Oil and Its Biodiesel on Wear of Fuel Injection Equipment Components of a Genset Engine
,”
Fuel
,
222
, pp.
841
851
. 10.1016/j.fuel.2018.02.132
4.
Sharma
,
N.
,
Agarwal
,
R. A.
, and
Agarwal
,
A. K.
,
2019
, “
Particulate Bound Trace Metals and Soot Morphology of Gasohol Fueled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022201
. 10.1115/1.4040580
5.
Agarwal
,
A. K.
, and
Dhar
,
A.
,
2010
, “
Comparative Performance, Emission, and Combustion Characteristics of Rice-Bran Oil and Its Biodiesel in a Transportation Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
064503
. 10.1115/1.4000143
6.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2020
, “
Effect of Fuel Injection Pressure and Engine Speed on Performance, Emissions, Combustion, and Particulate Investigations of Gasohols Fuelled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042201
. 10.1115/1.4044763
7.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2018
, “
Particle Characterization of Soot Aggregates Emitted by Gasohol Fueled Direct Injection Engine
,”
Energy Fuels
,
33
(
1
), pp.
420
428
. 10.1021/acs.energyfuels.8b01380
8.
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2015
, “
Experimental Investigations of Particulate Size and Number Distribution in an Ethanol and Methanol Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012201
. 10.1115/1.4027897
9.
Heyne
,
S.
, and
Harvey
,
S.
,
2013
, “
Assessment of the Energy and Economic Performance of Second Generation Biofuel Production Processes Using Energy Market Scenarios
,”
Appl. Energy
,
101
, pp.
203
212
. 10.1016/j.apenergy.2012.03.034
10.
Li
,
Y.
,
Nithyanandan
,
K.
,
Lee
,
T. H.
,
Donahue
,
R. M.
,
Lin
,
Y.
,
Lee
,
C.-F.
, and
Liao
,
S.
,
2016
, “
Effect of Water-Containing Acetone–Butanol–Ethanol Gasoline Blends on Combustion, Performance, and Emissions Characteristics of a Spark-Ignition Engine
,”
Energy Convers. Manage.
,
117
, pp.
21
30
. 10.1016/j.enconman.2016.02.083
11.
Zhang
,
Z.
,
Wang
,
T.
,
Jia
,
M.
,
Wei
,
Q.
,
Meng
,
X.
, and
Shu
,
G.
,
2014
, “
Combustion and Particle Number Emissions of a Direct Injection Spark Ignition Engine Operating on Ethanol/Gasoline and n-Butanol/Gasoline Blends With Exhaust Gas Recirculation
,”
Fuel
,
130
, pp.
177
188
. 10.1016/j.fuel.2014.04.052
12.
Gautam
,
M.
,
Martin
,
D.
, and
Carder
,
D.
,
2000
, “
Emissions Characteristics of Higher Alcohol/Gasoline Blends
,”
Proc. Inst. Mech. Eng. A: J. Power Energy
,
214
(
2
), pp.
165
182
. 10.1243/0957650001538263
13.
Gautam
,
M.
, and
Martin
,
D. W.
,
2000
, “
Combustion Characteristics of Higher-Alcohol/Gasoline Blends
,”
Proc. Inst. Mech. Eng. A: J. Power Energy
,
214
(
5
), pp.
497
511
. 10.1243/0957650001538047
14.
Gu
,
X.
,
Huang
,
Z.
,
Cai
,
J.
,
Gong
,
J.
,
Wu
,
X.
, and
Lee
,
C.-F.
,
2012
, “
Emission Characteristics of a Spark-Ignition Engine Fuelled With Gasoline-n-Butanol Blends in Combination With EGR
,”
Fuel
,
93
, pp.
611
617
. 10.1016/j.fuel.2011.11.040
15.
Elfasakhany
,
A.
,
2014
, “
Experimental Study on Emissions and Performance of an Internal Combustion Engine Fueled With Gasoline and Gasoline/n-Butanol Blends
,”
Energy Convers. Manage.
,
88
, pp.
277
283
. 10.1016/j.enconman.2014.08.031
16.
Wallner
,
T.
,
Miers
,
S. A.
, and
McConnell
,
S.
,
2009
, “
A Comparison of Ethanol and Butanol as Oxygenates Using a Direct-Injection, Spark-Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
032802
. 10.1115/1.3043810
17.
Deng
,
B.
,
Yang
,
J.
,
Zhang
,
D.
,
Feng
,
R.
,
Fu
,
J.
,
Liu
,
J.
,
Li
,
K.
, and
Liu
,
X.
,
2013
, “
The Challenges and Strategies of Butanol Application in Conventional Engines: The Sensitivity Study of Ignition and Valve Timing
,”
Appl. Energy
,
108
, pp.
248
260
. 10.1016/j.apenergy.2013.03.018
18.
Tornatore
,
C.
,
Marchitto
,
L.
,
Valentino
,
G.
,
Corcione
,
F. E.
, and
Merola
,
S. S.
,
2012
, “
Optical Diagnostics of the Combustion Process in a PFI SI Boosted Engine Fueled With Butanol–Gasoline Blend
,”
Energy
,
45
(
1
), pp.
277
287
. 10.1016/j.energy.2012.03.006
19.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2020
, “
Biodiesel Spray Characteristics and Their Effect on Engine Combustion and Particulate Emissions
,”
J. Energy Resour. Technol.
,
142
(
8
), p.
082303
. https://doi.org/10.1115/1.4045923
20.
Agarwal
,
A. K.
,
Park
,
S.
,
Dhar
,
A.
,
Lee
,
C. S.
,
Park
,
S.
,
Gupta
,
T.
, and
Gupta
,
N. K.
,
2018
, “
Review of Experimental and Computational Studies on Spray, Combustion, Performance, and Emission Characteristics of Biodiesel Fueled Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
120801
. 10.1115/1.4040584
21.
Agarwal
,
A. K.
,
Sharma
,
N.
,
Singh
,
A. P.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Patel
,
C.
,
2019
, “
Adaptation of Methanol–Dodecanol–Diesel Blend in Diesel Genset Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102203
. 10.1115/1.4043390
22.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
23.
Su
,
D. S.
,
Jentoft
,
R. E.
,
Müller
,
J.-O.
,
Rothe
,
D.
,
Jacob
,
E.
,
Simpson
,
C.
,
Tomović
,
Ž.
,
Müllen
,
K.
,
Messerer
,
A.
, and
Pöschl
,
U.
,
2004
, “
Microstructure and Oxidation Behaviour of Euro IV Diesel Engine Soot: A Comparative Study With Synthetic Model Soot Substances
,”
Catal. Today
,
90
(
1–2
), pp.
127
132
. 10.1016/j.cattod.2004.04.017
24.
Vander Wal
,
R. L.
,
Yezerets
,
A.
,
Currier
,
N. W.
,
Kim
,
D. H.
, and
Wang
,
C. M.
,
2007
, “
HRTEM Study of Diesel Soot Collected From Diesel Particulate Filters
,”
Carbon
,
45
(
1
), pp.
70
77
. 10.1016/j.carbon.2006.08.005
25.
Di Stasio
,
S.
,
2001
, “
Electron Microscopy Evidence of Aggregation Under Three Different Size Scales for Soot Nanoparticles in Flame
,”
Carbon
,
39
(
1
), pp.
109
118
. 10.1016/S0008-6223(00)00099-3
26.
Lee
,
K. O.
,
Cole
,
R.
,
Sekar
,
R.
,
Choi
,
M. Y.
,
Kang
,
J. S.
,
Bae
,
C. S.
, and
Shin
,
H. D.
,
2002
, “
Morphological Investigation of the Microstructure, Dimensions, and Fractal Geometry of Diesel Particulates
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
647
653
. 10.1016/S1540-7489(02)80083-9
27.
Lee
,
K. O.
,
Cole
,
R.
,
Sekar
,
R.
,
Choi
,
M. Y.
,
Zhu
,
J.
,
Kang
,
J.
, and
Bae
,
C.
,
2001
, “
Detailed Characterization of Morphology and Dimensions of Diesel Particulates Via Thermophoretic Sampling
,”
SAE Technical Paper No. 2001-01-3572
.
28.
Gogolev
,
I. M.
, and
Wallace
,
J. S.
,
2018
, “
Performance and Emissions of a Compression-Ignition Direct-Injected Natural Gas Engine With Shielded Glow Plug Ignition Assist
,”
Energy Convers. Manage.
,
164
, pp.
70
82
. 10.1016/j.enconman.2018.02.071
29.
Kirchner
,
U.
,
Scheer
,
V.
,
Vogt
,
R.
, and
Kägi
,
R.
,
2009
, “
TEM Study on Volatility and Potential Presence of Solid Cores in Nucleation Mode Particles From Diesel Powered Passenger Cars
,”
J. Aerosol Sci.
,
40
(
1
), pp.
55
64
. 10.1016/j.jaerosci.2008.08.002
30.
Short
,
M.
, and
Walker
,
P.
,
1963
, “
Measurement of Interlayer Spacings and Crystal Sizes in Turbostratic Carbons
,”
Carbon
,
1
(
1
), pp.
3
9
. 10.1016/0008-6223(63)90003-4
31.
Lapuerta
,
M.
,
Martos
,
F. J.
, and
Herreros
,
J. M.
,
2007
, “
Effect of Engine Operating Conditions on the Size of Primary Particles Composing Diesel Soot Agglomerates
,”
J. Aerosol Sci.
,
38
(
4
), pp.
455
466
. 10.1016/j.jaerosci.2007.02.001
32.
Yan
,
F.
,
Cheng
,
X.
,
Qiu
,
L.
,
Huang
,
R.
,
Huang
,
S.
, and
Liu
,
B.
,
2017
, “
Spray Flame Soot Sampling and Morphology Analysis of Butanol–Diesel Blends
,”
J. Energy Inst.
,
90
(
6
), pp.
855
863
. 10.1016/j.joei.2016.08.009
33.
Xi
,
J.
, and
Zhong
,
B. J.
,
2006
, “
Soot in Diesel Combustion Systems
,”
Chem. Eng. Technol.: Ind. Chem. Plant Equip. Process Eng. Biotechnol.
,
29
(
6
), pp.
665
673
. 10.1002/ceat.200600016
34.
Saffaripour
,
M.
,
Chan
,
T. W.
,
Liu
,
F.
,
Thomson
,
K. A.
,
Smallwood
,
G. J.
,
Kubsh
,
J.
, and
Brezny
,
R.
,
2015
, “
Effect of Drive Cycle and Gasoline Particulate Filter on the Size and Morphology of Soot Particles Emitted From a Gasoline-Direct-Injection Vehicle
,”
Environ. Sci. Technol.
,
49
(
19
), pp.
11950
11958
. 10.1021/acs.est.5b02185
35.
Koeylue
,
U.
,
Xing
,
Y.
, and
Rosner
,
D. E.
,
1995
, “
Fractal Morphology Analysis of Combustion-Generated Aggregates Using Angular Light Scattering and Electron Microscope Images
,”
Langmuir
,
11
(
12
), pp.
4848
4854
. 10.1021/la00012a043
36.
Litzinger
,
T.
,
Stoner
,
M.
,
Hess
,
H.
, and
Boehman
,
A.
,
2000
, “
Effects of Oxygenated Blending Compounds on Emissions From a Turbocharged Direct Injection Diesel Engine
,”
Int. J. Engine Res.
,
1
(
1
), pp.
57
70
. 10.1243/1468087001545263
37.
Smith
,
O. I.
,
1981
, “
Fundamentals of Soot Formation in Flames With Application to Diesel Engine Particulate Emissions
,”
Prog. Energy Combust. Sci.
,
7
(
4
), pp.
275
291
. 10.1016/0360-1285(81)90002-2
38.
Glassman
,
I.
,
1989
, “
Soot Formation in Combustion Processes
,”
Symposium (International) on Combustion
,
22
(
1
), pp.
295
311
. https://doi.org/10.1016/S0082-0784
39.
La Rocca
,
A.
,
Di Liberto
,
G.
,
Shayler
,
P.
, and
Fay
,
M.
,
2013
, “
The Nanostructure of Soot-in-Oil Particles and Agglomerates From an Automotive Diesel Engine
,”
Tribol. Int.
,
61
, pp.
80
87
. 10.1016/j.triboint.2012.12.002
40.
Rogak
,
S. N.
,
Flagan
,
R. C.
, and
Nguyen
,
H. V.
,
1993
, “
The Mobility and Structure of Aerosol Agglomerates
,”
Aerosol Sci. Technol.
,
18
(
1
), pp.
25
47
. 10.1080/02786829308959582
You do not currently have access to this content.