Abstract

Pyrolysis liquids can be evaluated in energy and material recovery. However, its characteristics and recovery potential highly depend on pyrolysis conditions. Olive pomace is lignocellulosic biomasses widely studied in the production of renewable energy and bio-based materials through pyrolysis, but there are no comprehensive studies about changes of pomace pyrolysis liquids' characteristics by pyrolysis conditions. Therefore, in this study, pyrolysis of olive pomace and various combinations of olive pomace with olive mill wastes at different heating rates, temperatures, and retention times was conducted to reveal effects of pyrolysis conditions on pyrolysis liquids' organic fractions. Moreover, heating values of organic compounds in pyrolysis liquids at different pyrolysis conditions were evaluated. All bio-oils comprises of aliphatic compounds (alkanes, alkenes, and alkynes), oxygenated compounds (acids, aldehydes, alcohols, esters, and ketones), and aromatic compounds (phenols and benzenes). The highest percentages of aliphatic compounds in olive pomace bio-oils were obtained at 600 °C, 5 °C/min heating rate with retention. A pyrolysis temperature increment leads to a decrement in H-type phenols and an increment in S-type and G-type phenolic compounds. Mixing pomace with olive mill wastes resulted in aliphatic compounds increment and oxygenated compounds decrement. Heating values of all bio-oils obtained under different pyrolysis conditions were found important for energy production. When pomace pyrolysis liqiuids' heating values changed between 2831 and 5100 cal/g, heating values of pomace-olive mill waste mixtures' bio-oils were found between 3300 and 5500 cal/g. Consequently, organic compounds in both pomace and pomace-olive mill bio-oils are valuable feedstocks and energy source in the number of product productions in various industrial processes.

References

1.
Mia
,
M.
,
Islam
,
A.
,
Islam Rubel
,
R.
, and
Rofiqul Islam
,
M.
,
2017
, “
Fractional Distillation & Characterization of Tire Derived Pyrolysis Oil
,”
Int. J. Eng. Technol.
,
3
(
1
), pp.
1
10
. 10.19072/ijet.280568
2.
Oladeji
,
J. T.
,
Itabiyi
,
E. A.
, and
Okekunle
,
P. O.
,
2015
, “
A Comprehensive Review of Biomass Pyrolysis as a Process of Renewable Energy Generation
,”
J. Nat. Sci. Res.
,
5
(
5
), pp.
99
105
.
3.
Serio
,
M. A.
,
Kroo
,
E.
, and
Wójtowicz
,
M. A.
,
2003
, “
Biomass Pyrolysis for Distributed Energy Generation
,”
Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem
,
48
(
2
), pp.
584
589
.
4.
Loow
,
Y.-L.
,
Wu
,
T. Y.
,
Lim
,
Y. S.
,
Tan
,
K. A.
,
Siow
,
L. F.
,
Jahim
,
J. M.
, and
Mohammad
,
A. W.
,
2017
, “
Improvement of Xylose Recovery from the Stalks of Oil Palm Fronds Using Inorganic Salt and Oxidative Agent
,”
Energy Convers. Manage.
,
138
, pp.
248
260
. 10.1016/j.enconman.2016.12.015
5.
Fathy
,
S. A.
,
Mahmoud
,
A. E.
,
Rashad
,
M. M.
,
Ezz
,
M. K.
, and
Mohammed
,
A. T.
,
2018
, “
Improving the Nutritive Value of Olive Pomace by Solid State Fermentation of Kluyveromyces Marxianus With Simultaneous Production of Gallic Acid
,”
Int. J. Recycl. Org. Waste Agric.
,
7
(
2
), pp.
135
141
. 10.1007/s40093-018-0199-5
6.
Papaioannou
,
E. H.
,
Patsios
,
S. I.
,
Karabelas
,
A. J.
, and
Philippopoulos
,
N. A.
,
2013
, “
Characterization of Condensates from an Indirect Olive Oil Pomace Drying Process: The Effect of Drying Temperature
,”
J. Environ. Chem. Eng.
,
1
(
4
), pp.
831
837
. 10.1016/j.jece.2013.07.025
7.
TÜBİTAK
,
M.
,
2015
,
Zeytin Sektörü Atiklarinin Yönetimi Projesi
,
TÜBİTAK MAM
,
Kocaeli, Gebze
.
8.
Lyu
,
G.
,
Wu
,
S.
, and
Zhang
,
H.
,
2015
, “
Estimation and Comparison of Bio-Oil Components From Different Pyrolysis Conditions
,”
Front. Energy Res.
,
3
, p.
28
. 10.3389/fenrg.2015.00028
9.
Guizani
,
C.
,
Jeguirim
,
M.
,
Valin
,
S.
,
Limousy
,
L.
, and
Salvador
,
S.
,
2017
, “
Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity
,”
Energies
,
10
(
6
), p.
796
. 10.3390/en10060796
10.
Ghouma
,
I.
,
Jeguirim
,
M.
,
Guizani
,
C.
,
Ouederni
,
A.
, and
Limousy
,
L.
,
2017
, “
Pyrolysis of Olive Pomace: Degradation Kinetics, Gaseous Analysis and Char Characterization
,”
Waste Biomass Valor.
,
8
(
5
), pp.
1689
1697
. 10.1007/s12649-017-9919-8
11.
Zhang
,
Y.
,
Zhao
,
W.
,
Li
,
B.
, and
Xie
,
G.
,
2018
, “
Microwave-Assisted Pyrolysis of Biomass for Bio-Oil Production: A Review of the Operation Parameters
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
040802
. 10.1115/1.4039604
12.
Kawale
,
H. D.
, and
Kishore
,
N.
,
2020
, “
Pyrolysis of Delonix Regia and Characterization of Its Pyrolytic Products: Effect of Pyrolysis Temperature
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082306
. 10.1115/1.4046226
13.
Jahirul
,
M. I.
,
Rasul
,
M. G.
,
Chowdhury
,
A. A.
, and
Ashwath
,
N.
,
2012
, “
Biofuels Production Through Biomass Pyrolysis—A Technological Review
,”
Energies
,
5
(
12
), pp.
4952
5001
. 10.3390/en5124952
14.
Hmid
,
A.
,
Mondelli
,
D.
,
Fiore
,
S.
,
Fanizzi
,
F. P.
,
Al Chami
,
Z.
, and
Dumontet
,
S.
,
2014
, “
Production and Characterization of Biochar From Three-Phase Olive Mill Waste Through Slow Pyrolysis
,”
Biomass Bioenergy
,
71
, pp.
330
339
. 10.1016/j.biombioe.2014.09.024
15.
Kabakcı
,
S. B.
, and
Aydemir
,
H.
,
2014
, “
Pyrolysis of Olive Pomace and Copyrolysis of Olive Pomace With Refuse Derived Fuel
,”
Environ. Prog. Sustain. Energy
,
33
(
2
), pp.
649
656
. 10.1002/ep.11827
16.
Encinar
,
J. M.
,
Gonzalez
,
J. F.
,
Martínez
,
G.
, and
Roman
,
S.
,
2009
, “
Catalytic Pyrolysis of Exhausted Olive Oil Waste
,”
J. Anal. Appl. Pyrolysis
,
85
(
1–2
), pp.
197
203
. 10.1016/j.jaap.2008.11.018
17.
He
,
B. J.
,
Zhang
,
Y.
,
Yin
,
Y.
,
Funk
,
T. L.
, and
Riskowski
,
G. L.
,
2000
, “
Operating Temperature and Retention Time Effects on the Thermochemical Conversion Process of Swine Manure
,”
Trans. ASAE
,
43
(
6
), pp.
1821
1825
. 10.13031/2013.3086
18.
Boateng
,
A. A.
,
Mullen
,
C. A.
,
Osgood-Jacobs
,
L.
,
Carlson
,
P.
, and
Macken
,
N.
,
2012
, “
Mass Balance, Energy, and Exergy Analysis of Bio-Oil Production by Fast Pyrolysis
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
042001
. 10.1115/1.4007659
19.
Isik
,
F.
,
2019
, “
Treatability of Olive Mill Wastewater (Zeytin karasuyunun arıtılabilirligi – In Turkish)
,”
MSc thesis
,
Konya Technical University
,
Konya,Turkey
.
20.
APHA
,
2005
,
Standard Methods for Examination of Water and Wastewater
, 21st ed.,
APHA/AWWA/WEF
,
New York, Washington DC
.
21.
Dinc
,
G.
, and
Yel
,
E.
,
2018
, “
Self-Catalyzing Pyrolysis of Olive Pomace
,”
J. Anal. Appl. Pyrolysis
,
134
, pp.
641
646
. 10.1016/j.jaap.2018.08.018
22.
Dinc
,
G.
, and
Yel
,
E.
,
2020
, “
Alternative Approach for Safe Disposal of Dry Olive Pomace: Pyrolysis With/Without Physical Preprocessing
,”
Int. J. Environ. Sci. Technol.
,
17
, pp.
2215
2232
. 10.1007/s13762-019-02612-z
23.
Tamošiūnas
,
A.
,
Chouchène
,
A.
,
Valatkevičius
,
P.
,
Gimžauskaitė
,
D.
,
Aikas
,
M.
,
Uscila
,
R.
,
Ghorbel
,
M.
, and
Jeguirim
,
M.
,
2017
, “
The Potential of Thermal Plasma Gasification of Olive Pomace Charcoal
,”
Energies
,
10
(
5
), p.
710
. 10.3390/en10050710
24.
Uzun
,
B. B.
,
Pütün
,
A. E.
, and
Pütün
,
E.
,
2007
, “
Composition of Products Obtained via Fast Pyrolysis of Olive-Oil Residue: Effect of Pyrolysis Temperature
,”
J. Anal. Appl. Pyrolysis
,
79
(
1–2
), pp.
147
153
. 10.1016/j.jaap.2006.12.005
25.
Guida
,
M. Y.
, and
Hannioui
,
A.
,
2016
, “
A Review on Thermochemical Treatment of Biomass: Pyrolysis of Olive Mill Wastes in Comparison With Other Types of Biomass
,”
Prog. Agric. Eng. Sci.
,
12
(
1
), pp.
1
23
. 10.1556/446.12.2016.1
26.
Efika
,
E. C.
,
Onwudili
,
J. A.
, and
Williams
,
P. T.
,
2015
, “
Products From the High Temperature Pyrolysis of RDF at Slow and Rapid Heating Rates
,”
J. Anal. Appl. Pyrolysis
,
112
, pp.
14
22
. 10.1016/j.jaap.2015.01.004
27.
McGrath
,
T. E.
,
Brown
,
A. P.
,
Meruva
,
N. K.
, and
Chan
,
W. G.
,
2009
, “
Phenolic Compound Formation From the Low Temperature Pyrolysis of Tobacco
,”
J. Anal. Appl. Pyrolysis
,
84
(
2
), pp.
170
178
. 10.1016/j.jaap.2009.01.008
28.
Shen
,
D.
,
Liu
,
G.
,
Zhao
,
J.
,
Xue
,
J.
,
Guan
,
S.
, and
Xiao
,
R.
,
2015
, “
Thermo-Chemical Conversion of Lignin to Aromatic Compounds: Effect of Lignin Source and Reaction Temperature
,”
J. Anal. Appl. Pyrolysis
,
112
, pp.
56
65
. 10.1016/j.jaap.2015.02.022
29.
Zhang
,
Z. H.
,
Song
,
Q.
,
Alwahabi
,
Z. T.
,
Yao
,
Q.
, and
Nathan
,
G. J.
,
2015
, “
Temporal Release of Potassium From Pinewood Particles During Combustion
,”
Combust. Flame
,
162
(
2
), pp.
496
505
. 10.1016/j.combustflame.2014.07.030
30.
Serrano
,
A.
,
Fermoso
,
F. G.
,
Alonso-Fariñas
,
B.
,
Rodríguez-Gutierrez
,
G.
,
Fernandez-Bolaños
,
J.
, and
Borja
,
R.
,
2017
, “
Olive Mill Solid Waste Biorefinery: High-Temperature Thermal Pre-Treatment for Phenol Recovery and Biomethanization
,”
J. Cleaner Prod.
,
148
, pp.
314
323
. 10.1016/j.jclepro.2017.01.152
31.
Carvalho
,
A.
,
Rabaçal
,
M.
,
Costa
,
M.
,
Alzueta
,
M. U.
, and
Abián
,
M.
,
2017
, “
Effects of Potassium and Calcium on the Early Stages of Combustion of Single Biomass Particles
,”
Fuel
,
209
, pp.
787
794
. 10.1016/j.fuel.2017.08.045
32.
Czernik
,
S.
, and
Bridgwater
,
A. V.
,
2004
, “
Overview of Applications of Biomass Fast Pyrolysis Oil
,”
Energy Fuels
,
18
(
2
), pp.
590
598
. 10.1021/ef034067u
33.
Nigam
,
P. S.
, and
Singh
,
A.
,
2011
, “
Production of Liquid Biofuels From Renewable Resources
,”
Prog. Energy Combust. Sci.
,
37
(
1
), pp.
52
68
. 10.1016/j.pecs.2010.01.003
34.
Zhang
,
Z.
,
Zhu
,
M.
,
Hobson
,
P.
,
Doherty
,
W.
, and
Zhang
,
D.
,
2018
, “
Contrasting the Pyrolysis Behavior of Selected Biomass and the Effect of Lignin
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062201
. 10.1115/1.4039321
35.
Bridgwater
,
A. V.
,
2004
, “
Biomass Fast Pyrolysis
,”
Thermal Science
,
8
(
2
), pp.
21
49
. 10.2298/TSCI0402021B
36.
Nanda
,
S.
,
Mohanty
,
P.
,
Kozinski
,
J. A.
, and
Dalai
,
A. K.
,
2014
, “
Physico-Chemical Properties of Bio-Oils From Pyrolysis of Lignocellulosic Biomass With High and Slow Heating Rate
,”
Energy Environ. Res.
,
4
(
3
), p.
21
. 10.5539/eer.v4n3p21
37.
Ling
,
C. K.
,
San
,
H. P.
,
Kyin
,
E. H.
,
Hua
,
L. S.
,
Chen
,
L. W.
, and
Yee
,
C. Y.
,
2015
, “
Yield and Calorific Value of Bio Oil Pyrolysed From Oil Palm Biomass and Its Relation With Solid Residence Time and Process Temperature
,”
Asian J. Sci. Res.
,
8
(
3
), pp.
351
358
. 10.3923/ajsr.2015.351.358
38.
Akdağ
,
A. S.
,
Atak
,
O.
,
Atimtay
,
A. T.
, and
Sanin
,
F. D.
,
2018
, “
Co-combustion of Sewage Sludge From Different Treatment Processes and a Lignite Coal in a Laboratory Scale Combustor
,”
Energy
,
158
, pp.
417
426
. 10.1016/j.energy.2018.06.040
You do not currently have access to this content.