Abstract

This paper evaluates the impacts of nuclear ammonia synthesis options on the environment through the life cycle assessment (LCA) technique. Ammonia is synthesized via the mature Haber–Bosch technique that combines hydrogen and nitrogen with 3:1 ratio to yield ammonia. For hydrogen production from water, five different hydrogen production methods are used, namely, conventional electrolysis (CE), high-temperature electrolysis (HTE), and 3-, 4-, and 5-step Cu–Cl cycles. The nitrogen required for ammonia synthesis is extracted from the air by the cryogenic air separation technique. The thermal and electrical energy need of production processes is supplied from a pressurized water reactor type nuclear power plant (NPP). The simapro software is utilized for LCA in the present study. The environmental impacts of nuclear ammonia are investigated through five impact categories, namely, abiotic depletion potential, acidification potential, global warming potential (GWP), ozone depletion potential, and human toxicity potential. According to LCA results, ammonia synthesis via HTE corresponds to the lowest environmental impact in all selected impact categories. Furthermore, the GWP for ammonia production via HTE is 0.1832 kg CO2 eq/kg ammonia, followed by CE (0.2240 kg CO2 eq/kg ammonia), 4-step Cu–Cl (0.3113 kg CO2 eq/kg ammonia), 3-step Cu–Cl (0.3323 kg CO2 eq/kg ammonia), and 5-step Cu–Cl (0.3370 kg CO2 eq/kg ammonia).

References

1.
Zamfirescu
,
C.
, and
Dincer
,
I.
,
2009
, “
Ammonia as a Green Fuel and Hydrogen Source for Vehicular Applications
,”
Fuel Process. Technol.
,
90
(
5
), pp.
729
737
. 10.1016/j.fuproc.2009.02.004
2.
Gilbert
,
P.
, and
Thornley
,
P.
,
2010
, “
Energy and Carbon Balance of Ammonia Synthesis From Biomass Gasification
,”
Poster at Bio-Ten Conference
,
Birmingham
, pp.
1
9
.
3.
World Nuclear Association
,
2018
.
Nuclear Energy and Climate Change
. https://www.world-nuclear.org/nuclear-essentials/nuclear-energy-and-climate-change.aspx
4.
Bicer
,
Y.
, and
Dincer
,
I.
,
2017
, “
Life Cycle Assessment of Nuclear-Based Hydrogen and Ammonia Synthesis Options: A Comparative Evaluation
,”
Int. J. Hydrogen Energy
,
42
(
33
), pp.
21559
21570
. 10.1016/j.ijhydene.2017.02.002
5.
Bicer
,
Y.
,
Dincer
,
I.
,
Zamfirescu
,
C.
,
Vezina
,
G.
, and
Raso
,
F.
,
2016
, “
Comparative Life Cycle Assessment of Various Ammonia Synthesis Methods
,”
J. Cleaner Prod.
,
135
, pp.
1379
1395
. 10.1016/j.jclepro.2016.07.023
6.
Bicer
,
Y.
, and
Dincer
,
I.
,
2018
, “
Life Cycle Assessment of Ammonia Utilization in City Transportation and Power Generation
,”
J. Cleaner Prod.
,
170
, pp.
1594
1601
. 10.1016/j.jclepro.2017.09.243
7.
Ozbilen
,
A.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2013
, “
Comparative Environmental Impact and Efficiency Assessment of Selected Hydrogen Production Methods
,”
Environ. Impact Assess. Rev.
,
42
, pp.
1
9
. 10.1016/j.eiar.2013.03.003
8.
Ozbilen
,
A.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2012
, “
Life Cycle Assessment of Hydrogen Production via Thermochemical Water Splitting Using Multi-Step Cu–Cl Cycles
,”
J. Cleaner Prod.
,
33
, pp.
202
216
. 10.1016/j.jclepro.2012.03.035
9.
Cetinkaya
,
E.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2012
, “
Life Cycle Assessment of Various Hydrogen Production Methods
,”
Int. J. Hydrogen Energy
,
37
(
3
), pp.
2071
2080
. 10.1016/j.ijhydene.2011.10.064
10.
Hacatoglu
,
K.
,
Rosen
,
M. A.
, and
Dincer
,
I.
,
2012
, “
Comparative Life Cycle Assessment of Hydrogen and Other Selected Fuels
,”
Int. J. Hydrogen Energy
,
37
(
13
), pp.
9933
9940
. 10.1016/j.ijhydene.2012.04.020
11.
Utgikar
,
V.
, and
Thiesen
,
T.
,
2006
, “
Life Cycle Assessment of High Temperature Electrolysis for Hydrogen Production via Nuclear Energy
,”
Int. J. Hydrogen Energy
,
31
(
7
), pp.
939
944
. 10.1016/j.ijhydene.2005.07.001
12.
Curran
,
M. A.
, (Ed.).
2012
.
Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products
.
John Wiley & Sons
,
Hoboken, NJ
.
13.
Frischknecht
,
R.
, and
Niels
,
J.
,
2007
.
Overview and Methodology—Data v2.0
.
Ecoinvent Rep. No. 1
, pp.
1
77
.
14.
Wernet
,
G.
,
Bauer
,
C.
,
Steubing
,
B.
,
Reinhard
,
J.
,
Moreno-Ruiz
,
E.
, and
Weidema
,
B.
,
2016
, “
The Ecoinvent Database Version 3 (part I): Overview and Methodology
,”
Int. J. Life Cycle Assess.
, pp.
1218
1230
. 10.1007/s11367-016-1087-8
15.
Dutta
,
S.
,
Morehouse
,
J. H.
, and
Khan
,
J. A.
,
1997
, “
Numerical Analysis of Laminar Flow and Heat Transfer in a High Temperature Electrolyser
,”
Int. J. Hydrogen Energy
,
22
(
9
), pp.
883
895
. 10.1016/S0360-3199(96)00243-1
16.
Naterer
,
G. F.
,
Suppiah
,
S.
,
Stolberg
,
L.
,
Lewis
,
M.
,
Wang
,
Z.
,
Daggupati
,
V.
,
Gabriel
,
K.
,
Dincer
,
I.
,
Rosen
,
M. A.
,
Spekkens
,
P.
,
Lvov
,
S. N.
,
Fowler
,
M.
,
Tremaine
,
P.
,
Mostaghimi
,
J.
,
Easton
,
E. B.
,
Trevani
,
L.
,
Rizvi
,
G.
,
Ikeda
,
B. M.
,
Kaye
,
M. H.
,
Lu
,
L.
,
Pioro
,
I.
,
Smith
,
W. R.
,
Secnik
,
E.
,
Jiang
,
J.
, and
Avsec
,
J.
,
2010
, “
Canada’s Program on Nuclear Hydrogen Production and the Thermochemical Cu–Cl Cycle
,”
Int. J. Hydrogen Energy
,
35
(
20
), pp.
10905
10926
. 10.1016/j.ijhydene.2010.07.087
17.
Timmerhaus
,
K. D.
, and
Reed
,
R. P.
,
2007
,
Cryogenic Engineering: Fifty Years of Progress
,
Springer Science & Business Media
,
New York
.
You do not currently have access to this content.