Abstract

This work presents the effect of specific gravity of coal on its combustion characteristics. Coals with different specific gravity fractions represented by the arithmetic mean specific gravity (MSG) in the range of 1.35 to 2.0 were prepared by sink–float based density separation from run-of-mine (ROM) coal. The characterization of coal with different MSG was done using proximate, ultimate, and gross calorific value (GCV) analysis. Thermogravimetric analysis and differential thermogravimetry (TGA-DTG) studies of coals with different MSG were carried out in oxygen atmosphere to analyze their combustion characteristics. Various burning profile parameters (Ti, Tp, Tf, DTGmax) were assessed to identify the impacts of MSG of coals on their combustion characteristics. Further, different combustion indices (Di, Df, S, Hf) were evaluated to get the insights of combustion. Based on the experimental results, it was observed that, with an increase in coal MSG from 1.35 to 2.0, GCV decreased from 7426 to 3625 kcal/kg, Ti varied from 355 to 412 °C, Tp varied between 466 and 487 °C, and DTGmax decreased from 6.73 to 4.83 wt%/min. The result signifies that with an increase in MSG of coal, its combustion properties weaken. The activation energy for combustion varied between 93 and 119 kJ/mol. Based on the present analysis, it may be observed that lower MSG coals have enhanced combustion characteristics than higher MSG coals.

References

1.
Franco
,
A.
, and
Diaz
,
A. R.
,
2009
, “
The Future Challenges for ‘Clean Coal Technologies’: Joining Efficiency Increase and Pollutant Emission Control
,”
Energy
,
34
(
3
), pp.
348
354
. 10.1016/j.energy.2008.09.012
2.
Sarkar
,
S.
,
2009
,
Fuel and Combustion
, 3rd ed.,
Universities Press (India) Private Ltd.
,
Hyderabad, India
.
3.
Iqbal
,
M.
,
Akhtar
,
T.
,
Karim
,
A.
, and
Khan
,
F.
,
2006
, “
An Investigation Into the Thermal Behaviour of Tharparker Coal
,”
J. Chem. Soc. Pak.
,
28
(
6
), pp.
519
524
.
4.
Chen
,
Y.
,
Mori
,
S.
, and
Pan
,
W. P.
,
1995
, “
Estimating the Combustibility of Various Coals by TG-DTA
,”
Energy Fuels
,
9
(
1
), pp.
71
74
. 10.1021/ef00049a011
5.
Zhang
,
W.
,
Jiang
,
S.
,
Wang
,
K.
,
Wang
,
L.
,
Xu
,
Y.
,
Wu
,
Z.
, and
Miao
,
M.
,
2015
, “
Thermogravimetric Dynamics and FTIR Analysis on Oxidation Properties of Low-Rank Coal at Low and Moderate Temperatures
,”
Int. J. Coal Prep. Util.
,
35
(
1
), pp.
39
50
. 10.1080/19392699.2013.873421
6.
Wang
,
J. H.
,
Li
,
F.
,
Chang
,
L. P.
, and
Xie
,
K. C.
,
2011
, “
Combustion Characteristics and Kinetics of Lingwu Coal and Its Macerals
,”
Energ. Source. Part A
,
33
(
6
), pp.
529
538
. 10.1080/15567030903097020
7.
Parvez
,
A. M.
, and
Wu
,
T.
,
2017
, “
Characteristics and Interactions Between Coal and Carbonaceous Wastes During Co-Combustion
,”
J. Energy Inst.
,
90
(
1
), pp.
12
20
. 10.1016/j.joei.2015.11.004
8.
Yi
,
B.
,
Zhang
,
L.
,
Mao
,
Z.
,
Huang
,
F.
, and
Zheng
,
C.
,
2014
, “
Effect of the Particle Size on Combustion Characteristics of Pulverized Coal in an O2/CO2 Atmosphere
,”
Fuel Process. Technol.
,
128
, pp.
17
27
. 10.1016/j.fuproc.2014.06.025
9.
Nabagło
,
D.
,
Kurek
,
T.
, and
Kurek
,
K.
,
2018
, “
Combustion Process Analysis and Diagnostic Using Optical Flame Scanners in Front-Fired Pulverized Coal Boiler
,”
ASME J. Energy Inst.
,
140
(
7
), p.
072003
. 10.1115/1.4039096
10.
Zhang
,
Y.
,
Guo
,
Y.
,
Cheng
,
F.
,
Yan
,
K.
, and
Cao
,
Y.
,
2015
, “
Investigation of Combustion Characteristics and Kinetics of Coal Gangue with Different Feedstock Properties by Thermogravimetric Analysis
,”
Thermochim. Acta
,
614
, pp.
137
148
. 10.1016/j.tca.2015.06.018
11.
Khankari
,
G.
, and
Khankari
,
S.
,
2016
, “
Power Generation From Coal Mill Rejection Using Kalina Cycle
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052004
. 10.1115/1.4033425
12.
Sarikaya
,
A. C.
,
Acma
,
H. H.
, and
Yaman
,
S.
,
2019
, “
Synergistic Interactions During Co-Combustion of Lignite, Biomass, and Their Chars
,”
J. Energy Inst.
,
141
(
December
), pp.
1
12
. 10.1115/1.4044057
13.
Aich
,
S.
,
Nandi
,
B. K.
, and
Bhattacharya
,
S.
,
2019
, “
Utilization of Sal Leaves and Sal Leaves Char to Improve the Combustion Performance of Reject Coal
,”
Energy Sources, Part A
,
41
(
19
), pp.
2299
2312
. 10.1080/15567036.2018.1555632
14.
Behera
,
D.
,
Nandi
,
B. K.
, and
Bhattacharya
,
S.
,
2018
, “
Chemical Properties and Combustion Behavior of Constituent Relative Density Fraction of a Thermal Coal
,”
Energy Sources, Part A
,
41
(
6
), pp.
654
664
. 10.1080/15567036.2018.1520348
15.
Yan
,
Y.
,
Feng
,
S.
,
Zhang
,
L.
,
Li
,
L.
,
Zhang
,
L.
, and
Yang
,
Z.
,
2017
, “
Experimental Research on Catalytic Combustion Characteristics of Inferior Coal and Sludge Mixture
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032201
. 10.1115/1.4037373
16.
Ken
,
B.
,
Aich
,
S.
,
Saxena
,
V. K.
, and
Nandi
,
B. K.
,
2018
, “
Combustion Behavior of KOH Desulphurized Coals Assessed by TGA-DTG
,”
Energy Sources, Part A
,
40
(
20
), pp.
2458
2466
. 10.1080/15567036.2018.1502844
17.
Yang
,
L.
,
Ran
,
J.
, and
Zhang
,
L.
,
2011
, “
Mechanism and Kinetics of Pyrolysis of Coal With High Ash and Low Fixed Carbon Contents
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031701
. 10.1115/1.4004786
18.
Gupta
,
O. P.
,
2000
,
Elements of Fuels, Furnaces and Refractories
, 5th ed.,
Khanna Publishers
,
Delhi
, p.
33
.
19.
Da Silva Filho
,
C. G.
, and
Milioli
,
F. E.
,
2008
, “
A Thermogravimetric Analysis of the Combustion of a Brazilian Mineral Coal
,”
Quim. Nova
,
31
(
1
), pp.
98
103
. 10.1590/S0100-40422008000100021
20.
Nandi
,
B. K.
, and
Bhattacharya
,
S.
,
2019
, “
Effect of Weathering and Stockpile Design on Physicochemical Properties of an Indian Thermal Coal
,”
Int. J. Coal Prep. Util.
, pp.
1
11
. 10.1080/19392699.2019.1595606
You do not currently have access to this content.