Abstract

Gas turbine systems are among potential energy converters to substitute the internal combustion engine in future series hybrid electric vehicle. Fuel consumption of these powertrains strongly relies on the energy converter efficiency, the energy management strategy deployed on-board as well as on the transient operation during start-up phase. This paper presents a dynamic modeling and the fuel consumption calculation of an intercooled regenerative reheat gas turbine system used as an auxiliary power unit on a series hybrid electric vehicle. A vehicle model is developed and an optimization method is proposed to optimize the powertrain operation. It consists of using the dynamic programing as an energy management strategy in order to minimize the fuel consumption and the number of switching On/Off of the power unit. Fuel consumption simulations are performed on the worldwide-harmonized light vehicles test cycle while considering the electric and the thermal comfort vehicle energetic needs. Then, a gas turbine dynamic model is developed, where turbomachinery and heat exchanger components are modeled by taking into account their dynamic inertias. The efficiency, the power, and the fuel consumption are calculated during transient operations. Based on the optimization results of switching ON and OFF the system, the fuel consumption dynamic simulation results are considered instead of the dynamic programming results. A constant power start-up strategy and a constant fuel strategy were investigated. Results show an increase in fuel consumption between 2.4% and 3.8% with the first start-up scenario and between 5.7% and 6.4% with the second scenario, compared with static model.

References

1.
Bou Nader
,
W.
,
Mansour
,
C.
,
Nemer
,
M.
, and
Guezet
,
O.
,
2018
, “
Exergo-Technological Explicit Methodology for Gas-Turbine System Optimization of Series Hybrid Electric Vehicles
,”
Proc. Inst. Mech. Eng., Part D
,
232
(
10
), pp.
1323
1338
. 10.1177/0954407017728849
2.
History of Chrysler Corporation Gas Turbine Vehicles, Chrysler Corporation
,
1979
.
3.
H.
Cunha
,
2011
, “
Investigation of the Potential of Gas Turbines for Vehicular Applications
”,
Master’s thesis
,
Chalmers, Department of Applied Mechanics, Division of Fluid Dynamics, Chalmers University of Technology
,
Gothenburg, Sweden
, p.
43
.
4.
Mansour
,
C.
,
Bou Nader
,
W.
,
Breque
,
F.
,
Haddad
,
M.
, and
Nemer
,
M.
,
2018
, “
Assessing Additional Fuel Consumption From Cabin Thermal Comfort and Auxiliary Needs on the Worldwide Harmonized Light Vehicles Test Cycle
,”
Transp. Res. D
,
62
(
July
), pp.
139
151
. 10.1016/j.trd.2018.02.012
5.
Bhargava
,
R. K.
,
Bianchi
,
M.
,
De Pascale
,
A.
,
Negri di Montenegro
,
G.
, and
Peretto
,
A.
,
2007
, “
Gas Turbine Based Power Cycles—A State-of-the-Art Review
,”
International Conference on Power Engineering
,
Hangzhou, China
,
Oct. 23–27
.
6.
Cottard
,
C.
,
Peugeot 406 Hybrid, PSA PEUGEOT CITROËN
.
7.
Excell
,
J.
,
2013
, “
This Week in 1965—The Rover-BRM Gas Turbine Car.
8.
Bou Nader
,
W.
,
Mansour
,
C.
, and
Nemer
,
M.
,
2018
, “
Optimization of Brayton External Combustion Gas-Turbine System for Extended Range Electric Vehicles
,”
Energy
,
150
, pp.
745
758
. 10.1016/j.energy.2018.03.008
9.
Mansour
,
C.
,
2015
, “
Trip-Based Optimization Methodology for a Rule-Based Energy Management Strategy Using a Global Optimization Routine: The Case of the Prius Plug-In Hybrid Electric Vehicle
,”
Proc. Inst. Mech. Eng., Part D
,
230
(
11
), pp.
1529
1545
. 10.1177/0954407015616272
10.
Mansour
,
C.
,
2012
, “
Optimized Energy Management Control for the Toyota Hybrid System Using Dynamic Programming on a Predicted Route With Short Computation Time
,”
Int. J. Automot. Technol.
,
13
(
2
), pp.
309
324
. 10.1007/s12239-012-0029-0
11.
Mazloum
,
Y.
,
Sayah
,
H.
, and
Nemer
,
M.
,
2016
, “
Static and Dynamic Modeling Comparison of an Adiabatic Compressed Air Energy Storage System
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
062001
. 10.1115/1.4033399
12.
Mazloum
,
Y.
,
Sayah
,
H.
, and
Nemer
,
M.
,
2017
, “
Dynamic Modelling and Simulation of an Isobaric Adiabatic Compressed Air Energy Storage (IA-CAES) System
,”
J. Energy Storage
,
11
, pp.
178
190
. 10.1016/j.est.2017.03.006
13.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Mastrovito
,
M.
,
2002
, “
A Modular Code for Real Time Dynamic Simulation of Gas Turbines in Simulink
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
506
517
. 10.1115/1.2132383
14.
Hussain
,
A.
, and
Seifi
,
H.
,
1992
, “
Dynamic Modeling of a Single Shaft Gas Turbine
,”
IFAC Control of Power Plants and Power Systems
,
Munich, Germany
,
Mar. 9–11
.
15.
Turie
,
S. E.
,
2011
, “
Gas Turbine Plant Modeling for Dynamic Simulation
,”
Master of Science thesis
,
KTH School of Industrial Engineering and Management
.
16.
Thirunavukarasu
,
E.
,
2013
, “
Modeling and Simulation Study of a Dynamic Gas Turbine System in a Virtual Test Bed Environment
,”
Master’s thesis
,
University of South Carolina
.
17.
Kim
,
J. H.
,
Song
,
T. W.
,
Kim
,
T. S.
, and
Ro
,
S. T.
,
2002
, “
Dynamic Simulation of Full Start-Up Procedure of Heavy Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
510
516
. 10.1115/1.1473150
18.
Botros
,
K. K.
,
Campbell
,
P. J.
, and
Mah
,
D. B.
,
1990
,
Dynamic Simulation of Compressor Station Operation Including Centrifugal Compressor & Gas Turbine
,
The American Society of Mechanical Engineers (ASME)
,
New York
.
19.
Schobeiri
,
M. T.
,
Attia
,
M.
, and
Lippke
,
C.
,
2008
, “
GETRAN: A Generic, Modularly Structured Computer Code for Simulation of Dynamic Behavior of Aero and Poer Generation Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
116
(
3
), pp.
483
494
. 10.1115/1.2906847
20.
Cengel
,
Y.
, and
Boles
,
M.
,
2006
,
Thermodynamics: An Engineering Approach
, 5th ed.,
McGraw Hill
,
New York
, pp.
517
521
.
21.
Sonntag
,
R.
, and
Borgnakke
,
R.
,
2003
,
Fundamentals of Thermodynamics
, 6th ed.,
Wiley
,
New York
, pp.
411
423
.
22.
Moran
,
M.
, and
Shapiro
,
H.
,
2006
,
Fundamentals of Engineering Thermodynamics
, 5th ed.,
John Wiley and Sons
,
New York
, pp.
404
414
.
23.
Ehsani
,
M.
,
Gao
,
Y.
, and
Emadi
,
A.
,
2004
,
Modern Electric, Hybrid Electric, and Fuel Cell Vehicles—Fundamentals, Therory, and Design
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
24.
Mi
,
C.
,
Abdul Masrur
,
M.
, and
Wenzhong Gao
,
D.
,
2011
,
Hybrid Electric Vehicles—Principles and Applications With Practical Perspectives
,
Wiley
,
New York
.
25.
Bou Nader
,
W.
,
Mansour
,
C.
,
Dumand
,
C.
, and
Nemer
,
M.
,
2018
, “
Brayton Cycles as Waste Heat Recovery Systems on Series Hybrid Electric Vehicles
,”
Energy Convers. Manage.
,
168
, pp.
200
214
. 10.1016/j.enconman.2018.05.004
26.
Benini
,
E.
, and
Muktinutalapati
,
N. R.
,
2011
,
Advances in Gas Turbine Technology
, Chapter 13: Materials for Gas Turbines—An Overview.
27.
Sundstrom
,
O.
, and
Guzzella
,
L.
,
2009
, “
A Generic Dynamic Programming Matlab Function
,”
2009 IEEE Control Applications & Intelligent Control
,
St Petersburg, Russia
,
July 8–10
,
New York
, pp.
1625
1630
.
28.
Yeung
,
Y. P. B.
,
Cheng
,
K. W. E.
,
Chan
,
W. W.
,
Lam
,
Y.
,
Choi
,
W. F.
, and
Ng
,
T. W.
,
2009
, “
Automobile Hybrid Air Conditioning Technology
,”
3rd International Conference on Power Electronics Systems and Applications
,
Chengdu, China
,
Aug. 23–25
.
29.
Kim
,
J. H.
,
Song
,
T. W.
,
Kim
,
T. S.
, and
Ro
,
S. T.
,
2001
, “
Model Development and Simulation of Transient Behavior of Heavy Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
123
3
, pp.
589
594
. 10.1115/1.1370973
30.
Chung
,
J. E.
,
Chung
,
J. W.
,
Kim
,
N. H.
,
Lee
,
S. W.
, and
Kim
,
G. Y.
,
2018
, “
An Investigation on the Efficiency Correction Method of the Turbocharger at Low Speed
,”
Energies
,
11
(
2
), p.
269
. 10.3390/en11020269
31.
Schorn
,
N. A.
,
2014
, “
The Radial Turbine for Small Turbocharger Applications: Evoluation and Analytical Methods for Twin-Entry Turbine Turbochargers
,”
SAE International
,
Warrendale, PA
, SAE Technical Paper No. 2014-01-1647.
32.
Serrano
,
J. R.
,
Guardiola
,
C.
,
Dolz
,
V.
,
Tiseira
,
A.
, and
Cervelló
,
C.
,
2013
,
Experimental Study of the Turbine Inlet Gas Temperature Influence on Turbocharger Performance
,
SAE International
,
Warrendale, PA
.
33.
Maghsoudi
,
P.
,
Sadeghi
,
S.
, and
Hanafizadeh
,
P.
,
2017
, “
Thermoeconomic Optimization and Comparison of Plate-Fin Heat Exchangers Using Louver, Offset Strip, Triangular and Rectangular Fins Applied in 200 kW Microturbines
,”
ASME J. Heat Transfer
,
139
(
10
), p.
101801
. 10.1115/1.4036618
34.
Li
,
Q.
,
Flamant
,
G.
,
Yuan
,
X.
,
Neveu
,
P.
, and
Luo
,
L.
,
2011
, “
Compact Heat Exchangers: A Review and Future Applications for a New Generation of High Temperature Solar Receivers
,”
Renew. Sustain. Energy Rev.
,
15
(
9
), pp.
4855
4875
. 10.1016/j.rser.2011.07.066
35.
Zhu
,
Y.
, and
Li
,
Y.
,
2008
, “
Three-Dimensional Numerical Simulation on the Laminar Flow and Heat Transfer in Four Basic Fins of Plate-Fin Heat Exchangers
,”
ASME J. Heat Transfer
,
130
(
11
), p.
111801
. 10.1115/1.2970072
36.
Chang
,
Y.
, and
Wang
,
C. A.
,
1997
, “
Generalized Heat Transfer Correlation for Louver Fin Geometry
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
533
544
. 10.1016/0017-9310(96)00116-0
37.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1995
, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
171
180
. 10.1016/0894-1777(94)00096-Q
38.
Ramana Murthy
,
K. V.
,
Ranganayakulu
,
C.
, and
Ashok Babu
,
T. P.
,
2015
, “
Development of Heat Transfer Coefficient and Friction Factor Correlations for Serrated Fins in Water Medium Using CFD
,”
J. Phys. Sci. Appl.
,
5
(
3
), pp.
238
248
. 10.17265/2159-5348/2015.03.010
39.
Kim
,
M.-S.
,
Lee
,
J.
,
Yook
,
S.-J.
, and
Lee
,
K.-S.
,
2011
, “
Correlations and Optimization of a Heat Exchanger With Offset-Strip Fins
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
2073
2079
. 10.1016/j.ijheatmasstransfer.2010.11.056
40.
Incropera
,
F.
, and
Dewitt
,
D.
,
1996
,
Fundamentals of Heat and Mass Transfer
, Vol.
886
,
School of Mechanical Engineering, Purdue University
,
West Lafayette, IN
, pp.
420
515
.
41.
Shah
,
R. K.
,
Ishizuka
,
M.
,
Rudy
,
T. M.
, and
Wadekar
,
V. V.
,
2005
, “
Compact Heat Exchangers for Microturbines
,”
Proceedings of Fifth International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology
,
Hoboken, NJ
.
42.
Idelchik
,
I. E.
,
1994
,
Handbook of Hydraulic Resistance
, 3rd ed., Vol.
7885b
,
Begell House
,
New York
, pp.
75
87
.
43.
Cooper
,
J. R.
, and
Dooley
,
R. B.
,
2007
, “
Release on the Ionization Constant of H2O
,”
The International Association for the Properties of Water and Steam
,
Lucerne, Switzerland
.
44.
McBride
,
B. J.
,
Zehe
,
M. J.
, and
Gordon
,
S.
,
2002
, “
NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species
,”
NASA Glenn Research Center
,
Cleveland, OH
, Report No. TP-2002-211556.
45.
Bayar
,
T.
,
2015
, “
Microturbines Take on the Market
,”
Cogeneration & On-Site Power Production
, pp.
21
24
.
46.
Wrightspeed Unveils New Turbine Range Extender for Medium- and Heavy-Duty Electric Powertrains; 30% More Efficient than Current Microturbine Generators
,”
Green Car Congress
,
2015
.
You do not currently have access to this content.