The main objective of the current work is to investigate the thermodynamic performance of a novel solar powered multi-effect refrigeration system. The proposed cycle consists of a solar tower system with a heliostat field and central receiver (CR) that has molten salt as the heat transfer fluid, an absorption refrigeration cycle (ARC), an ejector refrigeration cycle (ERC), and a cascade refrigeration cycle (CRC). Energy and exergy analyses were carried out to measure the thermodynamic performance of the proposed cycle, using Dhahran weather data and operating conditions. The largest contribution to cycle irreversibility was found to be from the CR system (52.5%), followed by the heliostat field (25%). The first and second-law efficiencies improved due to the increase in the following parameters: ejector evaporator temperature, turbine inlet and exit pressures, and cascade evaporator temperature. Parametric analysis showed that the compressor delivery pressure, turbine inlet and exit pressures, hot molten salt outlet temperature, and ejector evaporator temperature significantly affect the refrigeration output.

References

1.
El-Wakil
,
M. M.
,
1984
,
Power Plant Technology
,
McGraw-Hill
, New York.
2.
Şen, Z., 2004, “
Solar Energy in Progress and Future Research Trends
,”
Prog. Energy Combust. Sci.
,
30
(4), pp. 367–416.
3.
Alazazmeh
,
A. J.
, and
Mokheimer
,
E. M.
,
2015
, “
Review of Solar Cooling Technologies
,”
J. Appl. Mech. Eng.
,
4
(5), p.
180
.
4.
Lu, S., and Goswami, D. Y., 2002, “
Optimization of a Novel Combined Power/Refrigeration Thermodynamic Cycle
,”
ASME
Paper No. SED2002-1038.
5.
Wali
,
E.
,
1980
, “
Optimum Working Fluids for Solar Powered Rankine Cycle Cooling of Buildings
,”
Sol. Energy
,
25
(
3
), pp.
235
241
.
6.
Kane
,
M.
,
Larrain
,
D.
,
Favrat
,
D.
, and
Allani
,
Y.
,
2003
, “
Small Hybrid Solar Power System
,”
Energy
,
28
(
14
), pp.
1427
1443
.
7.
Agrawal
,
B.
, and
Karimi
,
M.
,
2012
, “
Thermodynamic Performance Assessment of a Novel Waste Heat Based Triple Effect Refrigeration Cycle
,”
Int. J. Refrig.
,
35
(
6
), pp.
1647
1656
.
8.
Fan
,
Y.
,
Luo
,
L.
, and
Souyri
,
B.
,
2007
, “
Review of Solar Sorption Refrigeration Technologies: Development and Applications
,”
Renewable Sustainable Energy Rev.
,
11
(
8
), pp.
1758
1775
.
9.
Khaliq
,
A.
,
Kumar
,
R.
,
Dincer
,
I.
, and
Khalid
,
F.
,
2014
, “
Energy and Exergy Analyses of a New Triple-Staged Refrigeration Cycle Using Solar Heat Source
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011004
.
10.
Agrawal
,
B.
,
Kumar
,
R.
, and
Khaliq
,
A.
,
2014
, “
First and Second Law Investigations of a New Solar-Assisted Thermodynamic Cycle for Triple Effect Refrigeration
,”
Int. J. Energy Res.
,
38
(
2
), pp.
162
173
.
11.
Noone
,
C. J.
,
Ghobeity
,
A.
,
Slocum
,
A. H.
,
Tzarntzis
,
G.
, and
Mitsos
,
A.
,
2011
, “
Site Selection for Hillside Central Receiver Solar Thermal Plant
,”
Sol. Energy
,
85
(
5
), pp.
839
848
.
12.
Slocum
,
A. H.
,
Buongiorno
,
J.
,
Forsberg
,
C. W.
,
Codd
,
D. S.
, and
Paxson
,
A. T.
,
2009
, “
Concentrated Solar Power System
,” PCT Patent No. PCT/US10/49474.
13.
Slocum
,
A. H.
,
Codd
,
D. S.
,
Buongiorno
,
J.
,
Forsberg
,
C.
,
Mckrell
,
T.
,
Nave
,
J. C.
,
Papanicolas
,
C. N.
,
Ghobeity
,
A.
,
Noone
,
C. J.
,
Passerini
,
S.
,
Rojas
,
F.
, and
Mitsos
,
A.
,
2011
, “
Concentrated Solar Power on Demand
,”
Solar
,
85
(
7
), pp.
1519
1529
.
14.
Bureau of Ocean Energy Management, 2018, “
Offshore Solar Energy
,” BOEM Public Affairs, Washington, DC, accessed Oct. 15, 2018, https://www.boem.gov/Renewable-Energy-Program/Renewable-Energy-Guide/Offshore-Solar-Energy.aspx
15.
Sun
,
D. W.
, and
Eames
,
I. W.
,
1995
, “
Recent Developments in the Design Theories and Applications of Ejectors—A Review
,”
Fuel Energy Abstr.
,
5
(
36
), p.
361
.https://www.researchgate.net/publication/279938638_Recent_developments_in_the_design_theories_and_applications_of_ejectors
16.
Carter
,
N. T.
, and
Campbell
,
R. J.
,
2009
, “
Water Issues of Concentrating Solar Power (CSP) Electricity in the U.S. Southwest
,” Congressional Research Service 7-5700, Library of Congress, R40631, accessed Oct. 15, 2018, www.crs.gov
17.
Chobeity
,
A.
,
Noone
,
C. J.
,
Papanicolas
,
C. N.
, and
Mitsos
,
A.
,
2011
, “
Optimal Time-Invariant Operation of a Power and Water Cogeneration Solar-Thermal Plant
,”
Sol. Energy
,
85
(
9
), pp.
2295
2320
.
18.
Mokheimer
,
E. M.
, and
Dabwan
,
Y. N.
,
2019
, “
Performance Analysis of Integrated Solar Tower With a Conventional Heat and Power Co-Generation Plant
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
021201
.
19.
Eames
,
I. W.
,
Aphornratana
,
S.
, and
Haider
,
H.
,
1995
, “
A Theoretical and Experimental Study of a Small-Scale Steam Jet Refrigerator
,”
Int. J. Refrig.
,
18
(
6
), pp.
378
386
.
20.
Reilly, H. E., and Kolb, G. J., 2001, “
An Evaluation of Molten-Salt Power Towers Including Results of the Solar Two Project
,” Sandia National Laboratory, Albuquerque, NM, Report No.
SAND--2001-3674
.https://digital.library.unt.edu/ark:/67531/metadc741819/
21.
Aphornratana
,
S.
, and
Eames
,
I. W.
,
1997
, “
A Small Capacity Steam-Ejector Refrigerator: Experimental Investigation of a System Using Ejector With Movable Primary Nozzle
,”
Int. J. Refrig.
,
20
(
5
), pp.
352
358
.
22.
Buck
,
R.
,
Abele
,
M.
,
Kunberger
,
J.
,
Denk
,
T.
,
Heller
,
P.
, and
Lupfert
,
E.
,
1999
, “
Receiver for Solar-Hybrid Gas Turbine and Combined Cycle System
,”
J. Phys.
,
9
(
3
), pp.
537
544
.https://jp4.journaldephysique.org/articles/jp4/abs/1999/03/jp4199909PR385/jp4199909PR385.html
23.
Buck
,
R.
,
Browning
,
T.
,
Denk
,
T.
,
Pfander
,
M.
,
Schwarzbozl
,
P.
, and
Telles
,
F.
,
2002
, “
Solar-Hybrid Gas Turbine-Based Power Systems (REFOS)
,”
ASME J. Sol. Energy Eng.
,
124
(
1
), pp.
332
339
.
24.
Horn
,
M.
,
Fuhring
,
H.
, and
Rheinlander
,
J.
,
2004
, “
Economic Analysis of Integrated Solar Combined Cycle Power Plants: A Sample Case: The Economic Feasibility of an ICCS Power Plant in Egypt
,”
Energy
,
29
(
5–6
), pp.
935
945
.
25.
Romero
,
M.
,
Buck
,
R.
, and
Pacheco
,
J.
,
2002
, “
An Update on Solar Central Receiver Systems, Projects, and Technologies
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
98
108
.
26.
Riffat
,
S.
, and
Xiaoli
,
M.
,
2004
, “
Comparative Investigation of Thermoelectric Air-Conditioners Versus Vapor Compression and Absorption Air-Conditioners
,”
Appl. Therm. Eng.
,
24
(
14–15
), pp.
1979
1993
.
27.
Klein
,
S.
, and
Reindl
,
D.
,
2005
, “
Solar Refrigeration
,”
ASHRAE J.
,
47
(
9
), pp.
S26
S30
.
28.
Lundqvist
,
P.
,
1993
, “
Stirling Cycle Heat Pumps and Refrigerators. Applied Thermodynamics and Refrigeration
,”
Royal Institute of Technology
,
Stockholm, Sweden
, p.
284
.
29.
Ewert
,
M. K.
,
Agrella
,
M.
,
DeMonbrun
,
D.
,
Frahm
,
J.
,
Bergeron
,
D. J.
, and
Berchowitz
,
D.
, 1998, "Experimental Evaluation of a Solar PV Refrigerator With Thermoelectric, Stirling and Vapor Compression Heat Pumps," ASES Solar 98 Conference, Albuquerque, NM, June 14--17.
30.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, New York.
31.
Li
,
X.
,
Kong
,
W.
,
Wang
,
Z.
,
Chang
,
C.
, and
Bai
,
F.
,
2010
, “
Thermal Model and Thermodynamic Performance of Molten Salt Cavity Receiver
,”
Renewable Energy
,
35
(
5
), pp.
981
988
.
32.
Siebers
,
D. L.
, and
Kraabel
,
J. S.
,
1984
, “
Estimating Convective Energy Losses From Solar Central Receivers
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND84-8717
.https://www.osti.gov/biblio/6906848-estimating-convective-energy-losses-from-solar-central-receivers
33.
Jamel
,
M. S.
,
Abd Rahman
,
A.
, and
Shamsuddin
,
A. H.
,
2013
, “
Performance Evaluation of Molten Salt Cavity Tubular Solar Central Receiver for Future Integration With Existing Power Plants in Iraq
,”
Aust. J. Basic Appl. Sci.
,
7
(
8
), pp.
399
410
.http://ajbasweb.com/old/ajbas/2013/June/399-410.pdf
You do not currently have access to this content.